精英家教網(wǎng)二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列關(guān)系式中正確的有( 。﹤(gè).
①b<0;②2a-b>0;③b2-4ac>0;④a+b+c>0.
A、1B、2C、3D、4
分析:①根據(jù)圖象的開口方向和對稱軸方程x=-
b
2a
<0解答;
②將對稱軸方程x=-
b
2a
<0變形解答;
③根據(jù)圖象與x軸的交點(diǎn)的個(gè)數(shù),解根的判別式b2-4ac與0的大小;
④取x=1,即可得y=a+b+c.
解答:解:①∵圖象開口向下,
∴a<0;
又∵對稱軸方程x=-
b
2a
<0,即
b
2a
>0,
∴b<0;故本選項(xiàng)正確;
②∵對稱軸方程-1<-
b
2a
<0,
∴1>
b
2a
>0;
∵a<0,
∴b>2a,
∴2a-b<0.
故本選項(xiàng)錯(cuò)誤;
③圖象與x軸有2個(gè)交點(diǎn),依據(jù)根的判別式可知b2-4ac>0,故本選項(xiàng)正確;
④與圖象知,當(dāng)x=1時(shí),y<0,即a+b+c<0.故本選項(xiàng)錯(cuò)誤;
綜上所述,正確的說法有①、③,共有2個(gè).
故選B.
點(diǎn)評:本題主要考查圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點(diǎn),與y軸交于精英家教網(wǎng)點(diǎn)C(0,
3
)
,當(dāng)x=-4和x=2時(shí),二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實(shí)數(shù)a,b,c的值;
(2)若點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),均以每秒1個(gè)單位長度的速度分別沿BA、BC邊運(yùn)動,其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動,當(dāng)運(yùn)動時(shí)間為t秒時(shí),連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,拋物線的對稱軸上是否存在點(diǎn)Q,使得以B,N,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c,當(dāng)x=
12
時(shí),有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)坐標(biāo)是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點(diǎn),PQ:QR=1:3,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當(dāng)-1<x<3時(shí),y>0.其中正確結(jié)論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時(shí),y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案