【題目】如圖,在正方形ABCD中,E是邊CD的中點(diǎn).
(1)用直尺和圓規(guī)作⊙O,使⊙O經(jīng)過點(diǎn)A、B、E(保留作圖痕跡,不寫作法);
(2)若正方形ABCD的邊長(zhǎng)為2,求(1)中所作⊙O的半徑.
【答案】(1)圖見解析;(2)⊙O的半徑是
【解析】
試題分析:(1)連接AE,分別作出AE,AB的垂直平分線,進(jìn)而得到交點(diǎn),即為圓心,求出答案;
(2)根據(jù)題意首先得出四邊形AFE′D是矩形,進(jìn)而利用勾股定理得出答案.
試題解析:(1)如圖1所示:
⊙O即為所求.
(2)如圖2,在(1)中設(shè)AB的垂直平分線交AB于點(diǎn)F,交CD于點(diǎn)E′.
則AF=AB=1,∠AFE′=90°,
∵四邊形ABCD是正方形,
∴∠FAD=∠D=90°,
∴四邊形AFE′D是矩形,
∴E′F=AD=2,DE′=AF=1,
∴點(diǎn)E′與點(diǎn)E重合,
連接OA,設(shè)⊙O的半徑為r,
可得OA=OE=r,
∴OF=EF﹣OE=2﹣r,
∴在Rt△AOF中,AO2=AF2+OF2,
∴r2=12+(2﹣r)2,
∴解得:r=,
∴⊙O的半徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)C為 (-1,0) .如圖所示,B點(diǎn)在拋物線y=x2+x-2圖象上,過點(diǎn)B作BD⊥x軸,垂足為D,且B點(diǎn)橫坐標(biāo)為-3.
(1)求證:△BDC≌△COA;
(2)求BC所在直線的函數(shù)關(guān)系式;
(3)拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△ACP是以AC為直角邊的直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A(a﹣1,4)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)是點(diǎn)B(3,﹣2b﹣2),則a= ,b= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鋼錠的截面是正方形,其邊長(zhǎng)是20厘米,要鍛造成長(zhǎng)、寬、高分別為40厘米,30厘米,10厘米的長(zhǎng)方體,應(yīng)截取這種鋼錠的長(zhǎng)度為________厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)擴(kuò)建教學(xué)樓,測(cè)量地基時(shí),量得地基長(zhǎng)為2a m,寬為(2a﹣24)m,試用a表示地基的面積,并計(jì)算當(dāng)a=25時(shí)地基的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com