【題目】下列各式中,運算結果正確的是( )
A.(﹣1)3+(﹣3.14)0+21=﹣
B.2x2=
C. =﹣4
D.a2a3=a5

【答案】D
【解析】解:A、(﹣1)3+(﹣3.14)0+21= ,故A錯誤;

B、2x2= ,故B錯誤;

C、 =4,故C錯誤;

D、a2a3=a5,故D正確;

所以答案是:D.

【考點精析】解答此題的關鍵在于理解零指數(shù)冪法則的相關知識,掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對整數(shù)指數(shù)冪的運算性質的理解,了解aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點BC的坐標分別為(2,0)和(6,0).

1)確定AD、E、F、G的坐標;

2)求四邊形ABFG的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標為(1,0),以線段OA為邊在第四象限內作等邊三角形△AOB,點Cx正半軸上一動點(OC1),連接BC,以線段BC為邊在第四象限內作等邊三角形△CBD,連接DA并延長,交y軸于點E.

(1)求證:△OBC≌△ABD

(2)在點C的運動過程中,∠CAD的度數(shù)是否會變化?如果不變,請求出∠CAD的度數(shù);如果變化,請說明理由.

(3)當點C運動到什么位置時,以AE,C為頂點的三角形是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了滿足學生借閱圖書的需求,計劃購買一批新書.為此,該校圖書管理員對一周內本校學生從圖書館借出各類圖書的數(shù)量進行了統(tǒng)計,結果如下圖.

請你根據(jù)統(tǒng)計圖中的信息,解答下列問題:

(1)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;

(2)該校學生最喜歡借閱哪類圖書?

(3)該校計劃購買新書共600本,若按扇形統(tǒng)計圖中的百分比來相應地確定漫畫、科普、文學、其它這四類圖書的購買量,求應購買這四類圖書各多少本?

(無原圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=x2﹣2mx﹣3m2(m>0)與x軸交于A、B兩點,A點在B點左邊,與y軸交于C點,頂點為M.
(1)當m=1時,求點A、B、M坐標;
(2)如圖(1)的條件下,若P為拋物線上一個動點,以AP為斜邊的等腰直角的直角頂點Q在對稱軸上,(A、P、Q按順時針方向排列),求P點坐標.

(3)如圖2,若一次函數(shù)y=kx+b過B點且與拋物線只有一個公共點,平移直線y=kx+b,使其過拋物線的頂點M,與拋物線另一個交點為D,與x軸交于F點,當m變化時,求證:DF:MF是定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)在如圖所示的平面直角坐標系中,依次連接下列各點: A(-5,0),B1,4),C3,3),D1,0),E3,-3),F1,-4).

2)請你在如圖所示的方格紙上按照如下要求設計直角三角形:

①使它的三邊中有一邊邊長不是有理數(shù);

②使它的三邊中有兩邊邊長不是有理數(shù);

③使它的三邊邊長都不是有理數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在ABCD中(非矩形),連接AC,△ABC為直角三角形,若AB=4,AC=3,則AD=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公交公司有A,B型兩種客車,它們的載客量和租金如下表:

A

B

載客量(/)

45

30

租金(/)

400

280

紅星中學根據(jù)實際情況,計劃租用A,B型客車共5輛,同時送七年級師生到基地參加社會實踐活動,設租用A型客車x輛,根據(jù)要求回答下列問題:

(1)用含x的式子填寫下表:

車輛數(shù)()

載客量()

租金()

A

x

45x

400x

B

5-x

(2)若要保證租車費用不超過1900元,求x的最大值;

(3)(2)的條件下,若七年級師生共有195人,寫出所有可能的租車方案,并確定最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E為邊CD上一點,將△ADE沿AE折疊至△AD′E處,AD′與CE交于點F.若∠B=52°,∠DAE=20°,則∠FED′的大小為

查看答案和解析>>

同步練習冊答案