【題目】已知是由經(jīng)過平移得到的,其中AB,C三點的對應(yīng)點分別是,,它們在平面直角坐標系中的坐標如下表所示:

1)觀察表中各對應(yīng)點坐標的變化,并填空:__________,__________

2)在下圖的平面直角坐標系中畫出

3)寫出是怎樣平移得到的?

【答案】12,8;(2)見解析;(3先向右平移4個單位長度,再向上平移2個單位長度(或先向上平移2個單位長度,再向右平移4個單位長度)可得

【解析】

1)由由A-1,0)及其對應(yīng)點A13,2)知先向右平移4個單位、再向上平移2個單位,再根據(jù)平移的規(guī)律求解可得;
2)根據(jù)各頂點的坐標得出兩個三角形;
3)由(1)的規(guī)律可得答案.

解:(12 , 8,及其對應(yīng)點向右平移了4個單位長度,向上平移了2個單位長度,則.故答案為2,8

2)如下圖所示:

3)由圖可知先向右平移4個單位長度,再向上平移2個單位長度(或先向上平移2個單位長度,再向右平移4個單位長度)可得

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.

(1)求證:點DAB的中點;

(2)求證:DE⊙O相切;

(3)若BC=18,AB=12,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC⊥BD,且AC=8,BD=4,各邊中點分別為A1、B1、C1、D1,順次連接得到四邊形A1B1C1D1,再取各邊中點A2、B2、C2、D2,順次連接得到四邊形A2B2C2D2,…,依此類推,這樣得到四邊形AnBnCnDn,則四邊形AnBnCnDn的面積為(

A. B. C. D. 不確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】滴滴快車是一種便捷的出行工具,計價規(guī)則如下表:

計費項目

里程費

時長費

遠途費

單價

1.8/千米

0.3/

0.8/千米

注:車費由里程費、時長費、遠途費三部分構(gòu)成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠途費的收取方式為行車里程7千米以內(nèi)(含7千米)不收遠途費,超過7千米的,超出部分每千米收0.8.

1)小王與小張各自乘坐滴滴快車,在同一地點約見,已知到達約見地點,他們的實際行車里程分別為6千米與8.5千米,兩人付給滴滴快車的乘車費相同(1)求這兩輛滴滴快車的實際行車時間相差多少分鐘;

2)實際乘車時間較少的人,由于出發(fā)時間比另一人早,所以提前到達約見地點在大廳等候.已知他等候另一人的時間是他自己實際乘車時間的1.5倍,且比另一人的實際乘車時間的一半多8.5分鐘,計算兩人各自的實際乘車時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,B=90°,AC=60cmA=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DFBC于點F,連接DE,EF.

(1)求證:AE=DF;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;

(3)當t為何值時,DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019526日第5屆中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會召開.某市在五屆數(shù)博會上的產(chǎn)業(yè)簽約金額的折線統(tǒng)計圖如圖.下列說法正確的是(

A. 簽約金額逐年增加

B. 與上年相比,2019年的簽約金額的增長量最多

C. 簽約金額的年增長速度最快的是2016

D. 2018年的簽約金額比2017年降低了22.98%

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在航線l的兩側(cè)分別有觀測點AB,點A到航線的距離為2km,點B位于點A北偏東60°方向且與A相距10km.現(xiàn)有一艘輪船從位于點B南偏西76°方向的C處,正沿該航線自西向東航行,5分鐘后該輪船行至點A的正北方向的D處.

(1)求觀測點B到航線的距離;

(2)求該輪船航行的速度(結(jié)果精確到0.1km/h).

(參考數(shù)據(jù): ≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,DAB延長線上一點,點EBC邊上,且BE=BD,連結(jié)AE、DEDC
①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

(1)(-20)+(-18)-(-14)-13

(2) 8+(-3)×(-2)2

(3)

(4)

查看答案和解析>>

同步練習冊答案