【題目】如圖,以∠AOB的頂點O為圓心,適當長為半徑畫弧,交OA于點C,交OB于點D,再分別以點C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內(nèi)部交于點E,作射線OE,連接CD.以下說法錯誤的是( )
A. △OCD是等腰三角形 B. 點E到OA、OB的距離相等
C. CD垂直平分OE D. 證明射線OE是角平分線的依據(jù)是SSS
【答案】C
【解析】
根據(jù)作圖得到OC=OD,判斷A正確;
連接CE、DE,根據(jù)作圖得到OC=OD,CE=DE,利用SSS證得△EOC≌△EOD從而證明得到射線OE平分∠AOB,再由角平分線的性質(zhì)判斷B正確;
根據(jù)作圖不能得出CD平分OE,判斷C錯誤;
連接CE、DE,根據(jù)作圖得到OC=OD、CE=DE,利用SSS證得△EOC≌△EOD從而證明得到射線OE平分∠AOB,判斷D正確.
A.根據(jù)作圖得到OC=OD,∴△COD是等腰三角形,正確,不符合題意;
B.連接CE、DE,根據(jù)作圖得到OC=OD,CE=DE.
在△EOC與△EOD中,∵,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,∴點E到OA、OB的距離相等,正確,不符合題意;
C.根據(jù)作圖不能得出CD平分OE,∴CD不是OE的平分線,錯誤,符合題意;
D.連接CE、DE,根據(jù)作圖得到OC=OD,CE=DE.
在△EOC與△EOD中,∵,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,正確,不符合題意.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】為了提高身體素質(zhì),有些人選擇到專業(yè)的健身中心鍛煉身體,某健身中心的消費方式如下:
普通消費:35元/次;
白金卡消費:購卡280元/張,憑卡免費消費10次再送2次;
鉆石卡消費:購卡560元/張,憑卡每次消費不再收費.
以上消費卡使用年限均為一年,每位顧客只能購買一張卡,且只限本人使用.
(1)李叔叔每年去該健身中心健身6次,他應選擇哪種消費方式更合算?
(2)設一年內(nèi)去該健身中心健身x次(x為正整數(shù)),所需總費用為y元,請分別寫出選擇普通消費和白金卡消費的y與x的函數(shù)關系式;
(3)王阿姨每年去該健身中心健身至少18次,請通過計算幫助王阿姨選擇最合算的消費方式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一個18米高的樓頂上有一信號塔DC,李明同學為了測量信號塔的高度,在地面的A處測的信號塔下端D的仰角為30°,然后他正對塔的方向前進了18米到達地面的B處,又測得信號塔頂端C的仰角為60°,CD⊥AB與點E,E、B、A在一條直線上.請你幫李明同學計算出信號塔CD的高度(結果保留整數(shù),≈1.7,≈1.4 ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀與理解:
折紙,常常能為證明一個命題提供思路和方法.例如,在△ABC中,AB>AC(如圖),怎樣證明∠C>∠B呢?
把AC沿∠A的角平分線AD翻折,因為AB>AC,所以點C落在AB上的點處,即,據(jù)以上操作,易證明≌,所以,又因為>∠B,所以∠C>∠B.
感悟與應用:
(1)如圖(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,試判斷AC和AD、BC之間的數(shù)量關系,并說明理由;
(2)如圖(b),在四邊形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,
① 求證:∠B+∠D=180°;
② 求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com