精英家教網 > 初中數學 > 題目詳情

【題目】若用同一種正多邊形瓷磚鋪地面,不能密鋪地面的正多邊形是( 。
A.正八邊形
B.正六邊形
C.正四邊形
D.正三邊形

【答案】A
【解析】A.正八邊形的一個內角度數為180-360÷8=135°,不是360°的約數,不能密鋪平面,符合題意;
B.正六邊形的一個內角度數為180-360÷6=120°,是360°的約數,能密鋪平面,不符合題意;
C.正四邊形的一個內角度數為180-360÷4=90°,是360°的約數,能密鋪平面,不符合題意;
D.正三角形的一個內角為60°,是360°的約數,能密鋪平面,不符合題意
故選:A.
看哪個正多邊形的一個內角的度數不是360°的約數,就不能密鋪平面.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】深圳某旅行社組織游客到廣西桂林旅游,他們要乘船參觀桂林山水,若旅行社租用8座的船x艘,則余下6人無座位;若租用12座的船則可少租用1艘,且最后一艘還沒坐滿,則乘坐最后一艘12座船的人數是( 。

A.184xB.64xC.304xD.188x

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一射擊運動員在一次射擊練習中打出的成績是(單位:環(huán)):7,8,9,8,6,8,10,7,這組數據的眾數是_________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A坐標為(6,0),點B在y軸的正半軸上,且=240.

(1)求點B坐標;

(2)若點P從B出發(fā)沿y軸負半軸方向運動,速度每秒2個單位,運動時間t秒,△AOP的面積為S,求S與t的關系式,并直接寫出t的取值范圍;

(3)在(2)的條件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB,在線段AB的垂直平分線上是否存在點Q,使得△AOQ的面積與△BPQ的面積相等?若存在,求出Q點坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)問題發(fā)現

如圖1,ACB和DCE均為等邊三角形,點A,D,E在同一直線上,連接BE,求AEB的度數.

(2)拓展探究

如圖2,ACB和DCE均為等腰直角三角形,ACB=DCE=90°,點A、D、E在同一直線上,CM為DCE中DE邊上的高,連接BE.請求AEB的度數及線段CM,AE,BE之間的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,MPNQ分別垂直平分ABAC.

(1)若△APQ的周長為12BC的長;

(2)BAC105°,求∠PAQ的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點P從點A開始沿折線AC-CB-BA運動,點P在AC,CB,BA邊上運動的速度分別為每秒3,4,5個單位.直線l從與AC重合的位置開始,以每秒個單位的速度沿CB方向移動,移動過程中保持l∥AC,且分別與CB,AB邊交于E,F兩點,點P與直線l同時出發(fā),設運動的時間為t秒,當點P第一次回到點A時,點P和直線l同時停止運動.

(1)當t=5秒時,點P走過的路徑長為_________;當t=_________秒時,點P與點E重合;

(2)當點P在AC邊上運動時,連結PE,并過點E作AB的垂線,垂足為H. 若以C、P、E為頂點的三角形與△EFH相似,試求線段EH的值;

(3)當點P在折線AC-CB-BA上運動時,作點P關于直線EF的對稱點Q.在運動過程中,若形成的四邊形PEQF為菱形,求t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】請寫出能單獨鋪滿地面的正多邊形:
正三角形或正四邊形或正六邊形 . (至少寫出2種)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知5a+2的立方根是3,3ab1的算術平方根是4,求a2b的值.

查看答案和解析>>

同步練習冊答案