作業(yè)寶如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3),設(shè)拋物線的頂點(diǎn)為D.
(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo);
(2)以B、C、D為頂點(diǎn)的三角形是直角三角形嗎?為什么?
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)指出符合條件的點(diǎn)P的位置,并直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

解:(1)設(shè)該拋物線的解析式為y=ax2+bx+c,
由拋物線與y軸交于點(diǎn)C(0,-3),可知c=-3,
即拋物線的解析式為y=ax2+bx-3,
把A(-1,0)、B(3,0)代入,

解得a=1,b=-2.
∴拋物線的解析式為y=x2-2x-3,
∴頂點(diǎn)D的坐標(biāo)為(1,-4).

(2)以B、C、D為頂點(diǎn)的三角形是直角三角形,
理由如下:
過點(diǎn)D分別作x軸、y軸的垂線,垂足分別為E、F.
在Rt△BOC中,OB=3,OC=3,
∴BC2=18,
在Rt△CDF中,DF=1,CF=OF-OC=4-3=1,
∴CD2=2,
在Rt△BDE中,DE=4,BE=OB-OE=3-1=2,
∴BD2=20,
∴BC2+CD2=BD2,故△BCD為直角三角形.

(3)連接AC,則容易得出△COA∽△PCA,又△PCA∽△BCD,可知Rt△COA∽R(shí)t△BCD,得符合條件的點(diǎn)為O(0,0).
過A作AP1⊥AC交y軸正半軸于P1,可知Rt△CAP1∽R(shí)t△COA∽R(shí)t△BCD,
求得符合條件的點(diǎn)為
過C作CP2⊥AC交x軸正半軸于P2,可知Rt△P2CA∽R(shí)t△COA∽R(shí)t△BCD,
求得符合條件的點(diǎn)為P2(9,0).
∴符合條件的點(diǎn)有三個(gè):O(0,0),,P2(9,0).
分析:(1)已知了拋物線圖象上的三點(diǎn)坐標(biāo),可用待定系數(shù)法求出該拋物線的解析式,進(jìn)而可用配方法或公式法求得頂點(diǎn)D的坐標(biāo).
(2)根據(jù)B、C、D的坐標(biāo),可求得△BCD三邊的長(zhǎng),然后判斷這三條邊的長(zhǎng)是否符合勾股定理即可.
(3)假設(shè)存在符合條件的P點(diǎn);首先連接AC,根據(jù)A、C的坐標(biāo)及(2)題所得△BDC三邊的比例關(guān)系,即可判斷出點(diǎn)O符合P點(diǎn)的要求,因此以P、A、C為頂點(diǎn)的三角形也必與△COA相似,那么分別過A、C作線段AC的垂線,這兩條垂線與坐標(biāo)軸的交點(diǎn)也符合點(diǎn)P點(diǎn)要求,可根據(jù)相似三角形的性質(zhì)(或射影定理)求得OP的長(zhǎng),也就得到了點(diǎn)P的坐標(biāo).
點(diǎn)評(píng):此題是二次函數(shù)的綜合題,涉及到二次函數(shù)解析式的確定、勾股定理、直角三角形的判定、相似三角形的判定和性質(zhì)等知識(shí),(3)題中能夠發(fā)現(xiàn)點(diǎn)O是符合要求的P點(diǎn),是解決此題的突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3),設(shè)拋物線的頂點(diǎn)為D.
(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo);
(2)以B、C、D為頂點(diǎn)的三角形是直角三角形嗎?為什么?
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)指出符合條件的點(diǎn)P的位置,并直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x1<x2,與y軸交于點(diǎn)C(0,-4),其中x1,x2是方程x2-4x-12=0的兩個(gè)根.
(1)求拋物線的解析式;
(2)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN∥BC,交AC于點(diǎn)N,連接CM,當(dāng)△CMN的面積最大時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•歷下區(qū)一模)如圖,拋物線與x軸交于A(-1,0),B(4,0)兩點(diǎn),與y軸交于C(0,3),M是拋物線對(duì)稱軸上的任意一點(diǎn),則△AMC的周長(zhǎng)最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與y軸交于點(diǎn)A(0,4),與x軸交于B、C兩點(diǎn).其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
(1)求拋物線的解析式;
(2)直線AC上是否存在點(diǎn)D,使△BCD為直角三角形.若存在,求所有D點(diǎn)坐標(biāo);反之說理;
(3)點(diǎn)P為x軸上方的拋物線上的一個(gè)動(dòng)點(diǎn)(A點(diǎn)除外),連PA、PC,若設(shè)△PAC的面積為S,P點(diǎn)橫坐標(biāo)為t,則S在何范圍內(nèi)時(shí),相應(yīng)的點(diǎn)P有且只有1個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與x軸交于A、B(6,0)兩點(diǎn),且對(duì)稱軸為直線x=2,與y軸交于點(diǎn)C(0,-4).
(1)求拋物線的解析式;
(2)點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),連接MA、MC,當(dāng)△MAC的周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案