【題目】已知反比例函數(shù)與一次函數(shù)(k≠0),一次函數(shù)的圖象與y軸交于點C,與x軸交于點D.
(1)當k=-1時,如圖,設直線 與雙曲線的兩個交點為A、B(B在A的右邊),求△OAB的面積;
(2)若直線 與雙曲線總有兩個不同的交點,求k的取值范圍;
(3)若直線 與雙曲線交于不同的兩點M()、N(),且滿足,求k的值.
【答案】(1);(2)且k≠0;(3)k=1或
【解析】
(1)首先聯(lián)立兩個函數(shù)的解析式求得交點坐標,再用得到面積.
(2)首先聯(lián)立兩個函數(shù)的解析式得到一個一元二次方程,把交點問題轉化為一元一次方程又多少解的問題,根據(jù)根的判別式去判斷.
(3)首先聯(lián)立兩個函數(shù)的解析式得到一個一元二次方程,根據(jù)韋達定理得到兩根之積與兩根之和的值,再把兩邊平方,代入求解即可.
(1)聯(lián)立,得或 , ∴A(2,3),B(3,2)
又D(5,0)∴
(2)由 =,得,△=25+24k>0,∴且k≠0;
(3)由 =,得,∴、為方程的兩個不相等的實數(shù)根.
則+= ,
則
=
解得k=1或且均為方程的解
∴k=1或.
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,對角線BD所在的直線上有兩點E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示.
(1)求證:△ABE≌△ADF;
(2)試判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明將小球沿地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度()與它的飛行時間()滿足二次函數(shù)關系,與的幾組對應值如下表所示:
() | … | |||||
() | … |
(1)求關于的函數(shù)解析式(不要求寫的取值范圍)
(2)問:小球的飛行高度能否達到?請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(,y1),(,y2)是拋物線上兩點,則y1<y2,其中正確的結論有( )個
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,點A是x軸負半軸上一個定點,點P是函數(shù)上一個動點,軸于點B,當點P的橫坐標逐漸增大時,四邊形OAPB的面積將會
A. 先增后減 B. 先減后增 C. 逐漸減小 D. 逐漸增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,y關于x的二次函數(shù)是( )
A. y=ax2+bx+c B. y=x(x﹣1)
C. y= D. y=(x﹣1)2﹣x2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在中,,分別為邊上的兩動點,且在運動過程中保持,為的對角線.
(1)如圖①,若,
圖①
①當點與點重合時,探索的值;
②當點與點不重合時,探索的值;
(2)如圖②,參考(1)研究方法,若,
圖②
①當點與點重合時,探索的值;
②當點與點不重合時,探索的值;
(3)如圖③,參考(1)(2)研究方法,若時,試探索是否存在常數(shù),使得,若存在,請直接寫出的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,且∠DAE=45°.設BE=a,DC=b,那么AB=_____(用含a、b的式子表示AB).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com