【題目】綜合與實踐

問題情境

數(shù)學活動課上,老師讓同學們以“三角形的旋轉(zhuǎn)”為主題開展數(shù)學活動,是兩個全等的直角三角形紙片,其中,

解決問題

1)如圖①,智慧小組將繞點順時針旋轉(zhuǎn),發(fā)現(xiàn)當點恰好落在邊上時,,請你幫他們證明這個結論;

2)縝密小組在智慧小組的基礎上繼續(xù)探究,連接,當C繞點繼續(xù)旋轉(zhuǎn)到如圖②所示的位置時,他們提出,請你幫他們驗證這一結論是否正確,并說明理由;

探索發(fā)現(xiàn)

3)如圖③,勤奮小組在前兩個小組的啟發(fā)下,繼續(xù)旋轉(zhuǎn),當三點共線時,求的長;

4)在圖①的基礎上,寫出一個邊長比為的三角形(可添加字母).

【答案】1)詳見解析;(2)正確,理由詳見解析;(3;(4)答案不唯一,合理即可.

【解析】

1)如圖①中,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,然后求出ACD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得∠ACD=60°,然后根據(jù)內(nèi)錯角相等,兩直線平行進行解答;

2)如圖②中,作DMBCM,ANECEC的延長線于N.根據(jù)旋轉(zhuǎn)的性質(zhì)可得BC=CE,AC=CD,再求出∠ACN=DCM,然后利用角角邊證明ACNDCM全等,根據(jù)全等三角形對應邊相等可得AN=DM,然后利用等底等高的三角形的面積相等證明.

3)如圖③中,作CHADH.解直角三角形求出AD,證明∠BAD=90°,利用勾股定理即可解決問題.

4)根據(jù)含有30°的直角三角形的三邊之比為12求解即可.

1)如圖①中,∵△DEC繞點C旋轉(zhuǎn)點D恰好落在AB邊上,

AC=CD,

∵∠BAC=90°-B=90°-30°=60°,

∴△ACD是等邊三角形,

∴∠ACD=60°,

又∵∠CDE=BAC=60°,

∴∠ACD=CDE,

DEAC;

2)如圖②中,作DMBCM,ANECEC的延長線于N

∵△DEC是由ABC繞點C旋轉(zhuǎn)得到

BC=CE,AC=CD

∵∠ACN+BCN=90°,∠DCM+BCN=180°-90°=90°,

∴∠ACN=DCM,

ACNDCM中,

,

∴△ACN≌△DCMAAS),

AN=DM,

∴△BDC的面積和AEC的面積相等(等底等高的三角形的面積相等),

SBDC=SAEC

3)如圖③中,作CHADH

∵,

B,AE共線,

∴∠BAC+EAC=180°

∴∠EAC=120°,

∵∠EDC=60°,

∴∠EAC+EDC=180°

A,ED,C四點共圓,

∴∠CAD=CED=30°,∠BAD=90°,

CA=CD,CHADAC=CD=AB=2

AH=DH=ACcos30°=,

AD=2,

4)如圖①中,設DEBCT

因為含有30°的直角三角形的三邊之比為12

由(1)可知BDT,DCT,ECT都是含有30°的直三角形,

∴△BDT,DCTECT符合條件.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點P是平面內(nèi)任意一點,點AB上不重合的兩個點,連結.當時,我們稱點P的“關于的關聯(lián)點”.

1)如圖2,當點P上時,點P的“關于的關聯(lián)點”時,畫出一個滿足條件的,并直接寫出的度數(shù);

2)在平面直角坐標系中有點,點M關于y軸的對稱點為點N

以點O為圓心,為半徑畫,在y軸上存在一點P,使點P“關于的關聯(lián)點”,直接寫出點P的坐標;

x軸上一動點,當的半徑為1時,線段上至少存在一點是關于某兩個點的關聯(lián)點,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD內(nèi)部有若干個點,則用這些點以及正方形ABCD的頂點AB、C、D把原正方形分割成一些三角形(互相不重疊):

1)填寫下表:

正方形ABCD內(nèi)點的個數(shù)

1

2

3

4

...

n

分割成三角形的個數(shù)

4

6

_____

_____

...

_____

2)原正方形能否被分割成2021個三角形?若能,求此時正方形ABCD內(nèi)部有多少個點?若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場經(jīng)銷一種成本價為20/件的商品,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于成本價的1.8倍,在試銷售過程中發(fā)現(xiàn)每天的銷量y(件)與售價x(元/件)之間滿足一次函數(shù)關系,對應關系如下表所示:

1)求yx之間的函數(shù)表達式,并寫出自變量x的取值范圍;

2)該商場銷售這種商品每天所獲得的利潤為w元,若每天銷售這種商品需支付人員工資、管理費等各項費用共200元,求wx之間的函數(shù)表達式;并求出這種商品銷售單價定為多少時,才能使商場每天獲取的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形紙片沿折疊,使點與點重合,再將沿折疊,使點恰好落在上的點處.若,則的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù) 的圖象相交于第一、三象限內(nèi)的兩點,與軸交于點 .

⑴求該反比例函數(shù)和一次函數(shù)的解析式;

⑵在軸上找一點使最大,求的最大值及點的坐標;

⑶直接寫出當時,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB9,AD6,點O為對角線AC的中點,點EDC的延長線上且CE1.5,連接OE,過點OOFOECB延長線于點F,連接FE并延長交AC的延長線于點G,則_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD⊙O的直徑,AE⊥CD于點EDA平分∠BDE

1)求證:AE⊙O的切線;

2)如果AB=4AE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B兩點(點A在點B的左側),與y軸交于點C0,3),作直線BC.動點Px軸上運動,過點PPMx軸,交拋物線于點M,交直線BC于點N,設點P的橫坐標為m

1)求拋物線的解析式;

2)當點P在線段OB上運動時,求線段MN的最大值;

3)是否存在點P,使得以點C、O、M、N為頂點的四邊形是平行四邊形?若存在,請直接寫出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案