【題目】如圖,在△ABC中,點(diǎn)O在邊AC上,⊙O與△ABC的邊BCAB分別相切于C,D兩點(diǎn),與邊AC交于E點(diǎn),弦CFAB平行,與DO的延長線交于M點(diǎn).

1)求證:點(diǎn)MCF的中點(diǎn);

2)若E的中點(diǎn),BCa,

的弧長;

的值.

【答案】1)見解析;(2πa;1

【解析】

1)由切線的性質(zhì)可得∠ACB=∠ODB90°,由平行線的性質(zhì)可得OMCF,由垂徑定理可得結(jié)論;

2)①由題意可證△BCD是等邊三角形,可得∠B60°,由直角三角形的性質(zhì)可得AB2a,ACa,ADa,通過證明△ADO∽△ACB,可得,可求DO的長,由弧長公式可求解;

②由直角三角形的性質(zhì)可求AOa,可得AE的長,即可求解.

證明:(1)∵⊙O與△ABC的邊BCAB分別相切于C,D兩點(diǎn),

∴∠ACB=∠ODB90°,

CFAB,

∴∠OMF=∠ODB90°,

OMCF,且OM過圓心O

∴點(diǎn)MCF的中點(diǎn);

2連接CDDF,OF,

⊙O與△ABC的邊BCAB分別相切于C,D兩點(diǎn),

BDBC,

E的中點(diǎn),

,

∴∠DCE=∠FCE,

ABCF,

∴∠A=∠ECF=∠ACD

ADCD,

∵∠A+B90°,∠ACD+BCD90°,

∴∠B=∠BCD

BDCD,且BDBC,

BDBCCD,

∴△BCD是等邊三角形,

∴∠B60°,

∴∠A30°=∠ECF=∠ACD,

∴∠DCF60°,

∴∠DOF120°,

BCa,∠A30°,

AB2a,ACa,

ADa,

∵∠A=∠A,∠ADO=∠ACB90°,

∴△ADO∽△ACB

,

DOa,

的弧長=πa;

∵∠A30°,ODAB

AO2DOa,

AEAOOEaa,

1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bxa0)經(jīng)過原點(diǎn)O和點(diǎn)A2,0),B(﹣1,2)三點(diǎn).

1)寫出拋物線的對稱軸和頂點(diǎn)坐標(biāo);

2)點(diǎn)(x1,y1),(x2y2)在拋物線上,若x1x21,比較y1,y2的大小,并說明理由;

3)點(diǎn)C與點(diǎn)B關(guān)于拋物線的對稱軸對稱,求直線AC的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“守護(hù)碧水藍(lán)天,守護(hù)我們的家園”,某市為了改善城市環(huán)境,預(yù)算 116 萬元購進(jìn) A、B 兩種型號的清掃機(jī),已知 A 型號清掃機(jī)的單價(jià)比 B 型號清掃 機(jī)單價(jià)的 1.2 萬元,若購進(jìn) 2 臺(tái) A 型號清掃機(jī)和 3 臺(tái) B 型號清掃機(jī)花費(fèi) 54.6 萬元.

1)求 A 型號清掃機(jī)和 B 型號清掃機(jī)的單價(jià)分別為多少萬元;

2)該市通過考察決定先購進(jìn)兩種型號的清掃機(jī)共 10 臺(tái),且 B 型號的清掃機(jī) 數(shù)量不能少于 A 型號清掃機(jī)的 1.5 倍,該市怎樣購買才能花費(fèi)最少?最少花費(fèi) 多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)當(dāng)和叮叮玩紙牌游戲:如圖是同一副撲克牌中的4張黑桃牌的正面,將這4張牌正面朝下洗勻后放在桌上,當(dāng)當(dāng)先從中抽出一張,叮叮從剩余的3張牌中也抽出一張,比較兩人抽出的牌面上的數(shù)字,數(shù)字大者獲勝.

1)求當(dāng)當(dāng)抽出的牌面上的數(shù)字為6的概率;

2)該游戲是否公平?請用畫樹狀圖或列表的方法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)A旋轉(zhuǎn)至矩形ABCD′位置,此時(shí)AC的中點(diǎn)恰好與D點(diǎn)重合,AB'CD于點(diǎn)E,若AB3cm,則線段EB′的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四張背面完全相同的A,B,C,D四張卡片,其正面分別畫有四種不同是圖形:正三角形、正方形、平行四邊形、圓,現(xiàn)將四張卡片背面向上后洗均勻.

1)從中任意摸出一張卡片,求摸到的卡片上畫有軸對稱圖形的概率;

2)從中任意摸出兩張卡片,求兩次摸到的卡片上所畫圖形既是中心對稱圖形又是軸對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會(huì)發(fā)現(xiàn)同學(xué)們就餐時(shí)剩余飯菜較多,浪費(fèi)嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤行動(dòng)”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動(dòng)的重要性,校學(xué)生會(huì)在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖.

1)這次被調(diào)查的同學(xué)共有   人;

2)補(bǔ)全條形統(tǒng)計(jì)圖,并在圖上標(biāo)明相應(yīng)的數(shù)據(jù);

3)校學(xué)生會(huì)通過數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供50人食用一餐.據(jù)此估算,該校18000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,AC6cm,BC8cm,點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度沿AC運(yùn)動(dòng);同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),以每秒2cm的速度沿CB運(yùn)動(dòng),當(dāng)Q到達(dá)點(diǎn)B時(shí),點(diǎn)P同時(shí)停止運(yùn)動(dòng).

1)求運(yùn)動(dòng)幾秒時(shí)△PCQ的面積為5cm2?

2)△PCQ的面積能否等于10cm2?若能,求出運(yùn)動(dòng)時(shí)間,若不能,說明理由;

3)是否存在某個(gè)時(shí)刻t,使四邊形ABQP的面積最?若存在,求出運(yùn)動(dòng)時(shí)間,若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做等對角四邊形”.

1)已知:如圖,四邊形ABCD等對角四邊形, ,則∠C= ;

2)已知:在等對角四邊形”ABCD中,∠DAB=60°,∠ABC=90°AB=4 , AD=3.求對角線AC的長;

3)已知:如圖,在平面直角坐標(biāo)系xoy中,四邊形ABCD等對角四邊形,其中,點(diǎn)Dy軸上,拋物線過點(diǎn)A、C,點(diǎn)P在拋物線上,當(dāng)滿足P點(diǎn)至少有3個(gè)時(shí),總有不等式成立,求n 的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案