【題目】如圖,ADCD,AB=10,BC=20,A=C=30°,求AD、CD的長.

【答案】AD=5+10,CD=10+5.

【解析】

試題分析:此題可以過點(diǎn)B作兩邊的垂線,可得兩個(gè)30°的直角三角形和一個(gè)矩形.根據(jù)30°的直角三角形的性質(zhì)和矩形的性質(zhì)就可求解.

解:如圖所示,過B點(diǎn)分別作BEAD于E,BFCD于F.

由ADCD知四邊形BEDF為矩形.

則ED=BF,F(xiàn)D=BE.在RtAEB中,

AEB=90°A=30°,AB=10.

BE=AB=5,AE=BE=5

在RtCFB中,

CFB=90°C=30°,BC=20,

BF=BC=10,CF=BF=10

AD=AE+ED=5+10,

CD=CF+FD=10+5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按四舍五入法則取近似值:70.60的有效數(shù)字為 個(gè),2.096(精確到百分位);15.046(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016湖南省邵陽市第7題)一元二次方程2x23x+1=0的根的情況是(

A.有兩個(gè)相等的實(shí)數(shù)根 B.有兩個(gè)不相等的實(shí)數(shù)根

C.只有一個(gè)實(shí)數(shù)根 D.沒有實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)P、Q分別是等邊ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ、CP交于點(diǎn)M.

(1)求證:ABQ≌△CAP;

(2)如圖1,當(dāng)點(diǎn)P、Q分別在AB、BC邊上運(yùn)動(dòng)時(shí),QMC變化嗎?若變化,請說理由;若不變,求出它的度數(shù).

(3)如圖2,若點(diǎn)P、Q在分別運(yùn)動(dòng)到點(diǎn)B和點(diǎn)C后,繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則QMC= 度.(直接填寫度數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩種商品原來的單價(jià)和為100元因市場變化,甲商品降價(jià)10%,乙商品提價(jià)40%,調(diào)價(jià)后兩種商品的單價(jià)和比原來的單價(jià)和提高了20%甲、乙兩種商品原來的單價(jià)各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】選用合適的方法解下列方程:

(1)(x+4)2=5(x+4);

(2)(x+1)2=4x;

(3)(x+3)2=(1﹣2x)2;

(4)2x2﹣10x=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù) y=x+1 的圖象與 y 軸交于點(diǎn) A一次函數(shù) y=kx+b 的圖象經(jīng)過點(diǎn) B0,﹣1),與x 以及 y=x+1 的圖象分別交于點(diǎn) C、D且點(diǎn) D 的坐標(biāo)為1,n),

1n= ,k= ,b=

2函數(shù) y=kx+b 的函數(shù)值大于函數(shù) y=x+1 的函數(shù)值,則X的取值范圍是

3求四邊形 AOCD 的面積;

4 x軸上是否存在點(diǎn) P,使得以點(diǎn) PC,D 為頂點(diǎn)的三角形是直角三角形?若存在求出點(diǎn) P 的坐標(biāo); 若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CABBC于點(diǎn)DDE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )

A. 4cm B. 6cm C. 8cm D. 10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b互為相反數(shù),c、d互為倒數(shù),m是絕對值等于3的負(fù)數(shù),則m2+(cd+a+b)×m+(cd)2009的值為

查看答案和解析>>

同步練習(xí)冊答案