【題目】浦東新區(qū)在創(chuàng)建文明城區(qū)的活動(dòng)中,有兩段長(zhǎng)度相等的彩色道磚路面的鋪設(shè)任務(wù),分別交給甲、乙兩個(gè)施工隊(duì)同時(shí)進(jìn)行施工.如圖是反映所鋪設(shè)的彩色道磚路面的長(zhǎng)度(米)與施工時(shí)間(時(shí))之間關(guān)系的部分圖像.請(qǐng)根據(jù)題意回答下列問題:

1)甲隊(duì)每小時(shí)施工_________米;

2)乙隊(duì)在時(shí)段內(nèi),之間的函數(shù)關(guān)系式是_________;

3)在時(shí)段內(nèi),甲隊(duì)比乙隊(duì)每小時(shí)快_________米;

4)如果甲隊(duì)施工速度不變,乙隊(duì)在小時(shí)后,施工速度增加到/時(shí),結(jié)果兩隊(duì)同時(shí)完成了任務(wù).則甲隊(duì)從開始施工到完工所鋪設(shè)的彩色道磚路面的長(zhǎng)度為_________.

【答案】(1)(2);(3);(4)

【解析】

1)用甲的工作總量60工作的時(shí)間6,即可得到答案;

2)設(shè)函數(shù)解析式y=kx,將點(diǎn)(230)代入求k的值即可;

3)根據(jù)圖象分別求出甲、乙的工作效率即可得到答案;

4)設(shè)鋪設(shè)的彩色道磚路面的長(zhǎng)度為a米,根據(jù)兩隊(duì)同時(shí)完成了任務(wù)列出方程求出a的值.

1)甲每小時(shí)施工:606=10(米),

故答案為:10

2)當(dāng)時(shí),設(shè)y=kx,

將(2,30)代入,得2k=30,

解得k=15,

故答案為:y=15x;

3)當(dāng)時(shí),甲每小時(shí)的工作量為10米;

乙每小時(shí)的工作量為: (米),

∴甲隊(duì)比乙隊(duì)每小時(shí)快10-5=5米,

故答案為:5;

4)設(shè)鋪設(shè)的每條彩色道磚路面的長(zhǎng)度為a米,

由題意得: ,

解得a=110,

經(jīng)檢驗(yàn),a=110是原方程的解,

故答案為:110.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)MCD的中點(diǎn),動(dòng)點(diǎn)E從點(diǎn)B出發(fā),沿BC運(yùn)動(dòng),到點(diǎn)C時(shí)停止運(yùn)動(dòng),速度為每秒1個(gè)長(zhǎng)度單位;動(dòng)點(diǎn)F從點(diǎn)M出發(fā),沿M→D→A遠(yuǎn)動(dòng),速度也為每秒1個(gè)長(zhǎng)度單位:動(dòng)點(diǎn)G從點(diǎn)D出發(fā),沿DA運(yùn)動(dòng),速度為每秒2個(gè)長(zhǎng)度單位,到點(diǎn)A后沿AD返回,返回時(shí)速度為每秒1個(gè)長(zhǎng)度單位,三個(gè)點(diǎn)的運(yùn)動(dòng)同時(shí)開始,同時(shí)結(jié)束.設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為x,△EFG的面積為y,下列能表示yx的函數(shù)關(guān)系的圖象是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與二次函數(shù)y=﹣x2+c的圖象相交于A(﹣1,2),B(2,n)兩點(diǎn).

(1)求一次函數(shù)和二次函數(shù)的解析式;

(2)根據(jù)圖象直接寫出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;

(3)設(shè)二次函數(shù)y=﹣x2+c的圖象與y軸相交于點(diǎn)C,連接AC,BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)EAD邊的中點(diǎn),BDCE交于點(diǎn)H,BE、AH交于點(diǎn)G,則下列結(jié)論:①AGBE;②BE:BC=:2;③SBHE=SCHD;④∠AHB=EHD.其中正確的個(gè)數(shù)是

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以菱形各邊的中點(diǎn)為頂點(diǎn)作四邊形,再以各邊的中點(diǎn)為頂點(diǎn)作四邊形,…,如此下去,得到四邊形,若對(duì)角線長(zhǎng)分別為,請(qǐng)用含、的代數(shù)式表示四邊形的周長(zhǎng)________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在中,,,點(diǎn)在斜邊上,將沿著過點(diǎn)的一條直線翻折,使點(diǎn)落在射線上的點(diǎn)處,連接并延長(zhǎng),交射線.

1)當(dāng)點(diǎn)與點(diǎn)重合時(shí),求BD的長(zhǎng).

2)當(dāng)點(diǎn)的延長(zhǎng)線上時(shí),設(shè),,求關(guān)于的函數(shù)關(guān)系式,并寫出定義域.

3)連接,當(dāng)是直角三角形時(shí),請(qǐng)直接寫出的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是18,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn).若點(diǎn)DBC邊的中點(diǎn),點(diǎn)G為線段EF上一動(dòng)點(diǎn),則CDG周長(zhǎng)的最小值為(

A.7B.9C.11D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠B=90°,E是AB上一點(diǎn),且AE=BC,∠1=∠2.

(1)證明:AB=AD+BC;

(2)判斷△CDE的形狀?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購買飲料,每種飲料被選中的可能性相同.

1)若他去買一瓶飲料,則他買到奶汁的概率是 ;

2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請(qǐng)用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案