【題目】實(shí)踐操作
如圖1,將矩形紙片沿對(duì)角線翻折,使點(diǎn)落在矩形所在平面內(nèi),和相交于點(diǎn),連接.
解決問(wèn)題
(1)在圖1中,①和的位置關(guān)系為__________;②將剪下后展開(kāi),得到的圖形是_____;
(2)若圖1中的矩形變?yōu)槠叫兴倪呅螘r(shí),如圖2所示,結(jié)論①和結(jié)論②是否成立,若成立,請(qǐng)?zhí)暨x其中的一個(gè)結(jié)論加以證明,若不成立,請(qǐng)說(shuō)明理由;
拓展應(yīng)用
(3)小紅沿對(duì)角線折疊一張矩形紙片,發(fā)現(xiàn)所得圖形是軸對(duì)稱(chēng)圖形,沿對(duì)稱(chēng)軸再次折疊后,得到的仍是軸對(duì)稱(chēng)圖形,則小紅折疊的矩形紙片的長(zhǎng)寬之比為_________.
【答案】(1)①;②菱形;(2)成立,證明見(jiàn)解析;(3)或
【解析】
(1)①利用AAS定理求證△≌△CDE,從而得到DE=,CE=AE,然后根據(jù)等腰三角形的性質(zhì)求得,然后根據(jù)內(nèi)錯(cuò)角相等兩直線平行即可判斷;
②根據(jù)菱形的判定方法即可解決問(wèn)題;
(2)只要證明AE=EC,即可證明結(jié)論②成立;只要證明∠ADB′=∠DAC,即可推出B′D∥AC;
(3)①當(dāng)AB:AD=1:1時(shí),符合題意.②當(dāng)AD:AB=時(shí),也符合題意
解:(1)①由折疊性質(zhì)可知:,
又∵
∴△≌△CDE
∴DE=,CE=AE,
∴,
又∵
∴
∴;
②由①可知AE=CE,又由折疊性質(zhì)可知
將剪下后展開(kāi),得到的圖形是四條邊都相等的四邊形,
又∵∠AEC為鈍角
∴將剪下后展開(kāi),得到的圖形是菱形;
故答案為:;菱形;
(2)若選擇①證明如下,
四邊形是平行四邊形,
,
將沿翻折至,
,
,
,
,
,
,
若選擇②證明如下:
四邊形是平行四邊形,
,
,
將沿翻折至,
,
,
,
是等腰三角形;
將剪下后展開(kāi),得到的圖形四邊相等,
將剪下后展開(kāi),得到的圖形是菱形.
(3)如圖中,
①當(dāng)AB:AD=1:1時(shí),四邊形ABCD是正方形,
∴∠BAC=∠CAD=∠EAB′=45°,
∵AE=AE,∠B′=∠AFE=90°,
∴△AEB′≌△AEF(AAS),
∴AB′=AF,
此時(shí)四邊形AFEB′是軸對(duì)稱(chēng)圖形,符合題意.
②當(dāng)AD:AB=時(shí),也符合題意,
∵此時(shí)∠DAC=30°,
∴AC=2CD,
∴AF=FC=CD=AB=AB′,
∴此時(shí)四邊形AFEB′是軸對(duì)稱(chēng)圖形,符合題意.
綜上所述,滿足條件的矩形紙片的長(zhǎng)寬之比為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:兩個(gè)相似等腰三角形,如果它們的底角有一個(gè)公共的頂點(diǎn),那么把這兩個(gè)三角形稱(chēng)為“關(guān)聯(lián)等腰三角形”.如圖,在與中, ,且所以稱(chēng)與為“關(guān)聯(lián)等腰三角形”,設(shè)它們的頂角為,連接,則稱(chēng)會(huì)為“關(guān)聯(lián)比".
下面是小穎探究“關(guān)聯(lián)比”與α之間的關(guān)系的思維過(guò)程,請(qǐng)閱讀后,解答下列問(wèn)題:
[特例感知]
當(dāng)與為“關(guān)聯(lián)等腰三角形”,且時(shí),
①在圖1中,若點(diǎn)落在上,則“關(guān)聯(lián)比”=
②在圖2中,探究與的關(guān)系,并求出“關(guān)聯(lián)比”的值.
[類(lèi)比探究]
如圖3,
①當(dāng)與為“關(guān)聯(lián)等腰三角形”,且時(shí),“關(guān)聯(lián)比”=
②猜想:當(dāng)與為“關(guān)聯(lián)等腰三角形”,且時(shí),“關(guān)聯(lián)比”= (直接寫(xiě)出結(jié)果,用含的式子表示)
[遷移運(yùn)用]
如圖4, 與為“關(guān)聯(lián)等腰三角形”.若點(diǎn)為邊上一點(diǎn),且,點(diǎn)為上一動(dòng)點(diǎn),求點(diǎn)自點(diǎn)運(yùn)動(dòng)至點(diǎn)時(shí),點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,,為邊上一動(dòng)點(diǎn),、為邊上兩個(gè)動(dòng)點(diǎn),且,則線段的長(zhǎng)度最大值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)組織學(xué)生參加交通安全知識(shí)網(wǎng)絡(luò)測(cè)試活動(dòng).小華對(duì)九年(8)班全體學(xué)生的測(cè)試成績(jī)進(jìn)行了統(tǒng)計(jì),并將成績(jī)分為四個(gè)等級(jí):優(yōu)秀、良好、一般、不合格,繪制成如下的統(tǒng)計(jì)圖(不完整),請(qǐng)你根據(jù)圖中所給的信息解答下列問(wèn)題:
(1)九年(8)班有______名學(xué)生,并把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(2)已知該市共有名中學(xué)生參加了這次交通安全知識(shí)測(cè)試,請(qǐng)你根據(jù)該班成績(jī)估計(jì)該市在這次測(cè)試中成績(jī)?yōu)閮?yōu)秀的人數(shù);
(3)小華查了該市教育網(wǎng)站發(fā)現(xiàn),全市參加本次測(cè)試的學(xué)生中,成績(jī)?yōu)閮?yōu)秀的有人,請(qǐng)你用所學(xué)統(tǒng)計(jì)知識(shí)簡(jiǎn)要說(shuō)明實(shí)際優(yōu)秀人數(shù)與估計(jì)人數(shù)出現(xiàn)較大偏差的原因.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線交軸于點(diǎn),交軸于點(diǎn),若圖中陰影部分的三角形都是等腰直角三角形,則從左往右數(shù)第5個(gè)陰影三角形的面積是_____,第2019個(gè)陰影三角形的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠有甲種原料,乙種原料,現(xiàn)用兩種原料生產(chǎn)處兩種產(chǎn)品共件,已知生產(chǎn)每件產(chǎn)品需甲種原料,乙種原料,且每件產(chǎn)品可獲得元;生產(chǎn)每件產(chǎn)品甲種原料,乙種原料,且每件產(chǎn)品可獲利潤(rùn)元,設(shè)生產(chǎn)產(chǎn)品 件(產(chǎn)品件數(shù)為整數(shù)件),根據(jù)以上信息解答下列問(wèn)題:
(1)生產(chǎn)兩種產(chǎn)品的方案有哪幾種?
(2)設(shè)生產(chǎn)這件產(chǎn)品可獲利元,寫(xiě)出關(guān)于的函數(shù)解析式,寫(xiě)出(1)中利潤(rùn)最大的方案,并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是正方形的對(duì)角線,,邊在其所在直線上向右平移,將通過(guò)平移得到的線段記為,連結(jié),,并過(guò)點(diǎn)作,垂足為,連接和,在平移變換過(guò)程中,設(shè)的面積為,,則的最大值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y=與直線l:y=kx+b相交于點(diǎn)A,B,直線l與y軸交于點(diǎn)P.
(1)當(dāng)k=0時(shí),求的值;
(2)點(diǎn)M是拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MG⊥直線l于點(diǎn)G,當(dāng)k=0時(shí),求的值;
(3)點(diǎn)M是拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MG∥y軸交直線l于點(diǎn)G,當(dāng)k=2時(shí),求證:不論b為何實(shí)數(shù),的值為定值,并求定值;
(4)若將(2)的拋物線改為“y=ax2”,其他條件不變,則的值還為定值嗎?若是,請(qǐng)求出定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,,點(diǎn)分別是邊的中點(diǎn),連接.將繞點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為.
(1)問(wèn)題發(fā)現(xiàn)
①當(dāng)時(shí),____________;②當(dāng)時(shí),___________.
(2)拓展探究試判斷:當(dāng)時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情形給出證明.
(3)問(wèn)題解決
繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至三點(diǎn)在同一條直線上時(shí),直接寫(xiě)出線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com