【題目】如圖,Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O交AB于點(diǎn)D,過點(diǎn)D作⊙O的切線,與邊BC交于點(diǎn)E,若AD=, AC=3.則DE長為( 。

A. B. 2 C. D.

【答案】B

【解析】

連接OD,CD.由切線長定理得CD=DE,可證明ADC∽△ACB,則可求得BD,再由勾股定理求得BC,可證明BE=DE,從而求得DE的長.

連接OD,CD.
AC為⊙O的直徑,
∴∠ADC=90°,
AD=,AC=3.
CD=,
OD=OC=OA,
∴∠OCD=ODC,
DE是切線,
∴∠CDE+ODC=90°.
∵∠OCD+DCB=90°,
∴∠BCD=CDE,
DE=CE.
∴△ADC∽△ACB,
∴∠B=ACD,
,
BC==4,
∵∠ACD+DCB=90°,
∴∠B+DCB=90°,B+CDE=90°,CDE+BDE=90°,
∴∠B=BDE,
BE=DE,
BE=CE=DE.
DE=BC=×4=2.
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,ABAC=6,BC=8,點(diǎn)DBC邊上的一個動點(diǎn),點(diǎn)EAC邊上,∠ADEB.設(shè)BD的長為x,CE的長為y

(1)當(dāng)DBC的中點(diǎn)時,求CE的長;

(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;

(3)如果ADE為等腰三角形,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,則(x1﹣1)2+(x2﹣1)2的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動中,李燕和劉凱兩位同學(xué)設(shè)計(jì)了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)動甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).

(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;

(2)該游戲是否公平?如果不公平,請修改游戲規(guī)則使游戲公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABCD中,∠BAD,∠ADC的平分線AE,DF分別與線段BC相交于點(diǎn)E,F,AEDF相交于點(diǎn)G.若AD10AB6,AE4,則DF的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD△ABC的角平分線,點(diǎn)OAB的中點(diǎn),連接DO并延長到點(diǎn)E,使OE=OD,連接AE,BE

1)求證:四邊形AEBD是矩形;

2)當(dāng)△ABC滿足什么條件時,矩形AEBD是正方形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行于x軸的直線分別與一次函數(shù)y=-x+3和二次函數(shù)y= x2 -2x-3的圖象交于A(x1,y1),B(x2,y2),C(x3,y3)三點(diǎn),且x1<x2<x3,設(shè)m= x1+x2+x3,則m的取值范圍是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是拋物線y=﹣x2+x+2在第一象限上的點(diǎn),過點(diǎn)P分別向x軸和y軸引垂線,垂足分別為AB,則四邊形OAPB周長的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E△ABC的內(nèi)心,AE的延長線和△ABC的外接圓相交于點(diǎn)D.

(1)當(dāng)△ABC的外接圓半徑為1時,且∠BAC=60°,求弧BC的長度.

(2)連接BD,求證:DE=DB.

查看答案和解析>>

同步練習(xí)冊答案