【題目】如圖1,小明將一張矩形紙片沿對角線剪開,得到兩張三角形紙片(如圖2),量得他們的斜邊長為10cm,較短直角邊長為5cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,但點B、C、F、D在同一條直線上,且點C與點F重合(在圖3至圖6中統(tǒng)一用F表示),小明在對這兩張三角形紙片進行如下操作時遇到了三個問題,請你幫助解決.

(1)將圖3中的△ABF沿BD向右平移到圖4的位置,使點B與點F 重合,請你求出平移的距離;

(2)將圖3中的△ABF繞點F順時針方向旋轉(zhuǎn)30°到圖5的位置,A1F交DE于點G,請你求出線段FG的長度;

(3)將圖3中的△ABF沿直線AF翻折到圖6的位置,AB1DE于點H,請證明:AH=DH

【答案】(1) 5cm;(2);(3)證明見解析.

【解析】

(1)根據(jù)題意,分析可得:圖形平移的距離就是線段BF的長,進而在Rt△ABC中求得BF=5cm,即圖形平移的距離是5cm;

(2)在Rt△EFD中,求出FD的長,根據(jù)直角三角形的性質(zhì),可得:FG=FD,即可求得FG的值;

(3)借助平移的性質(zhì),經(jīng)過平移,對應(yīng)點所連的線段平行且相等,對應(yīng)線段平行且相等,容易證明.

(1)圖形平移的距離就是線段BC的長,

∵在RtABC中,斜邊長為10cm,BAC=30°,

BC=5cm,

∴平移的距離為5cm.

(2)∵∠FA=30°,

∴∠,D=30°.

∴∠

RtEFD中,ED=10 cm,

FD=

cm.

(3)△AHE中,∵

FD=FA,所以EF=FB=FB1,,即AE=D

又∵,

∴△≌△(AAS),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E:y2=4x的準(zhǔn)線為l,焦點為F,O為坐標(biāo)原點.
(1)求過點O,F(xiàn),且與l相切的圓的方程;
(2)過F的直線交拋物線E于A,B兩點,A關(guān)于x軸的對稱點為A′,求證:直線A′B過定點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=Asin(ωx+φ),(0<φ<π)的圖象如圖所示,若f(x0)=3,x0∈( , ),則sinx0的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 內(nèi)有一點M(2,1),過M的兩條直線l1 , l2分別與橢圓E交于A,C和B,D兩點,且滿足 (其中λ>0,且λ≠1),若λ變化時,AB的斜率總為 ,則橢圓E的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究院的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如圖所示,為抑制房價過快上漲,政府從8月份采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.
(Ⅰ)地產(chǎn)數(shù)據(jù)研究院研究發(fā)現(xiàn),3月至7月的各月均價y(萬元/平方米)與月份x之間具有較強的線性相關(guān)關(guān)系,試建立y關(guān)于x的回歸方程(系數(shù)精確到0.01),政府若不調(diào)控,依次相關(guān)關(guān)系預(yù)測第12月份該市新建住宅銷售均價;
(Ⅱ)地產(chǎn)數(shù)據(jù)研究院在2016年的12個月份中,隨機抽取三個月份的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個月份的所屬季度,記不同季度的個數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù): =25, =5.36, =0.64
回歸方程 = x+ 中斜率和截距的最小二乘估計公式分別為:
= =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2(1nx﹣a)+a,則下列結(jié)論中錯誤的是(
A.a>0,x>0,f(x)≥0
B.a>0,x>0,f(x)≤0
C.a>0,x>0,f(x)≥0
D.a>0,x>0,f(x)≤0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (e為自然對數(shù)的底數(shù)),曲線y=f(x)在(1,f(1))處的切線與直線4x+3ey+1=0互相垂直. (Ⅰ)求實數(shù)a的值;
(Ⅱ)若對任意x∈( ,+∞),(x+1)f(x)≥m(2x﹣1)恒成立,求實數(shù)m的取值范圍;
(Ⅲ)設(shè)g(x)= ,Tn=1+2[g( )+g( )+g( )+…+g( )](n=2,3…).問:是否存在正常數(shù)M,對任意給定的正整數(shù)n(n≥2),都有 + + +…+ <M成立?若存在,求M的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在數(shù)列{an}中,a1=4,an>0,前n項和為Sn , 若
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列 的前n項和為Tn , 求Tn

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AB=4 ,點C為半圓AB上一動點,以BC為邊向⊙O外作正△BCD(點D在直線AB的上方),連接OD,則線段OD的長(
A.隨點C的運動而變化,最大值為4
B.隨點C的運動而變化,最大值為4
C.隨點C的運動而變化,最小值為2
D.隨點C的運動而變化,但無最值

查看答案和解析>>

同步練習(xí)冊答案