【題目】有一個(gè)不透明的袋子里裝有除標(biāo)記數(shù)字不同外其余都相同的4個(gè)小球,小球上的數(shù)字分別標(biāo)有2、3、4、6
(1)任意摸出一個(gè)小球,所標(biāo)的數(shù)字超過5的概率是
(2)任意摸出兩個(gè)小球,所標(biāo)的數(shù)字積是奇數(shù)的概率是
(3)任意摸出一個(gè)小球,記下所標(biāo)的數(shù)字后,再將小球放回袋中,攪勻后再摸出一個(gè)小球,摸到的這兩個(gè)小球所標(biāo)數(shù)字的和為偶數(shù)的概率是多少? (請用“樹形圖"方法說明)
【答案】(1);(2)0;(3).
【解析】
(1)根據(jù)概率公式直接求解即可;
(2)列舉出所有情況,看所標(biāo)的數(shù)字積是奇數(shù)的情況占總情況的多少即可;
(3)畫出樹形圖,列舉出所有情況,看兩個(gè)小球所標(biāo)數(shù)字的和為偶數(shù)的情況有多少即可.
解:(1)任意摸出一個(gè)小球,共有4種等可能結(jié)果,所標(biāo)的數(shù)字超過5的有1種,
∴所標(biāo)的數(shù)字超過5的概率是;
(2)所有情況為:2,3;2,4;2,6;3,4;3,6;4,6;共6種情況,所標(biāo)的數(shù)字積是奇數(shù)的有0種情況,所以所標(biāo)的數(shù)字積是奇數(shù)的概率是0;
(3)樹形圖如下:
由圖可知共有16種等可能的結(jié)果,其中兩個(gè)小球所標(biāo)數(shù)字的和為偶數(shù)的有10種,
∴摸到的這兩個(gè)小球所標(biāo)數(shù)字的和為偶數(shù)的概率是:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1、2、3分別表示甲、乙、丙三人由A地到B地的路線圖,已知
甲的路線為:A→C→B;
乙的路線為:A→D→E→F→B,其中E為AB的中點(diǎn);
丙的路線為:A→I→J→K→B,其中J在AB上,且AJ>JB.
若符號[→]表示[直線前進(jìn)],則根據(jù)圖1、圖2、圖3的數(shù)據(jù),判斷三人行進(jìn)路線長度的大小關(guān)系為( 。
A. 甲=乙=丙 B. 甲<乙<丙 C. 乙<丙<甲 D. 丙<乙<甲
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l上有A、B兩點(diǎn),線段AB=10cm.點(diǎn)C在直線l上,且滿足BC=4cm,點(diǎn)P為線段AC的中點(diǎn),求線段BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計(jì)劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學(xué)生的選修情況,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進(jìn)行了整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計(jì)圖中,m的值是 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動,請直接寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線經(jīng)過點(diǎn)A(-5.-6)且與直線: y=-x+6平行,直線與x軸、y軸分別交于點(diǎn)B,C
(1)求直線的表達(dá)式及其與x軸的交點(diǎn)D的坐標(biāo):
(2)判斷四邊形ABCD是什么四邊形?并證明你的結(jié)論:
(3)若點(diǎn)E是直線AB上一點(diǎn),平面內(nèi)存在一點(diǎn)F,使得四邊形CBEF是正方形,求點(diǎn)E的坐標(biāo). 請直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動點(diǎn)(P與B、C不重合),連接AP,過點(diǎn)B作BQ⊥AP交CD于點(diǎn)Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點(diǎn)M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)AB=3,BP=2PC,求QM的長;
(3)當(dāng)BP=m,PC=n時(shí),求AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠B=60°,AB=2,E,F(xiàn)分別是BC、CD的中點(diǎn),連接AE、EF,則△AEF的周長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動,同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時(shí)間是t秒(t>0).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com