【題目】有一個(gè)不透明的袋子里裝有除標(biāo)記數(shù)字不同外其余都相同的4個(gè)小球,小球上的數(shù)字分別標(biāo)有2、3、4、6

(1)任意摸出一個(gè)小球,所標(biāo)的數(shù)字超過5的概率是

(2)任意摸出兩個(gè)小球,所標(biāo)的數(shù)字積是奇數(shù)的概率是

(3)任意摸出一個(gè)小球,記下所標(biāo)的數(shù)字后,再將小球放回袋中,攪勻后再摸出一個(gè)小球,摸到的這兩個(gè)小球所標(biāo)數(shù)字的和為偶數(shù)的概率是多少? (請用“樹形圖"方法說明)

【答案】1;(20;(3.

【解析】

1)根據(jù)概率公式直接求解即可;

2)列舉出所有情況,看所標(biāo)的數(shù)字積是奇數(shù)的情況占總情況的多少即可;

3)畫出樹形圖,列舉出所有情況,看兩個(gè)小球所標(biāo)數(shù)字的和為偶數(shù)的情況有多少即可.

解:(1)任意摸出一個(gè)小球,共有4種等可能結(jié)果,所標(biāo)的數(shù)字超過5的有1種,

∴所標(biāo)的數(shù)字超過5的概率是

2)所有情況為:2,32,4;26;3,4;36;4,6;共6種情況,所標(biāo)的數(shù)字積是奇數(shù)的有0種情況,所以所標(biāo)的數(shù)字積是奇數(shù)的概率是0

3)樹形圖如下:

由圖可知共有16種等可能的結(jié)果,其中兩個(gè)小球所標(biāo)數(shù)字的和為偶數(shù)的有10種,

∴摸到的這兩個(gè)小球所標(biāo)數(shù)字的和為偶數(shù)的概率是:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1、2、3分別表示甲、乙、丙三人由A地到B地的路線圖,已知

甲的路線為:A→C→B;

乙的路線為:A→D→E→F→B,其中EAB的中點(diǎn);

丙的路線為:A→I→J→K→B,其中JAB上,且AJ>JB.

若符號[→]表示[直線前進(jìn)],則根據(jù)圖1、圖2、圖3的數(shù)據(jù),判斷三人行進(jìn)路線長度的大小關(guān)系為( 。

A. == B. 甲<乙<丙 C. 乙<丙<甲 D. 丙<乙<甲

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1) ;          (2) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l上有A、B兩點(diǎn),線段AB10cm.點(diǎn)C在直線l上,且滿足BC4cm,點(diǎn)P為線段AC的中點(diǎn),求線段BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計(jì)劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學(xué)生的選修情況,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進(jìn)行了整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給信息解答下列問題:

(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計(jì)圖中,m的值是 ;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動,請直接寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線經(jīng)過點(diǎn)A(-5.-6)且與直線: y=-x+6平行,直線x軸、y軸分別交于點(diǎn)BC

(1)求直線的表達(dá)式及其與x軸的交點(diǎn)D的坐標(biāo):

(2)判斷四邊形ABCD是什么四邊形?并證明你的結(jié)論:

(3)若點(diǎn)E是直線AB上一點(diǎn),平面內(nèi)存在一點(diǎn)F,使得四邊形CBEF是正方形,求點(diǎn)E的坐標(biāo). 請直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為正方形ABCD的邊BC上一動點(diǎn)(PB、C不重合),連接AP,過點(diǎn)BBQAPCD于點(diǎn)Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′BA的延長線于點(diǎn)M

(1)試探究APBQ的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)當(dāng)AB=3BP=2PC,求QM的長;

(3)當(dāng)BP=m,PC=n時(shí),求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,∠B=60°,AB=2,E,F(xiàn)分別是BC、CD的中點(diǎn),連接AE、EF,則AEF的周長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,B=90°,BC=5,C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動,同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)DE運(yùn)動的時(shí)間是t秒(t0.過點(diǎn)DDFBC于點(diǎn)F,連接DEEF.

1)求證:AE=DF;

2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.

3)當(dāng)t為何值時(shí),DEF為直角三角形?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案