【題目】解一元一次不等式或不等式組

13(x+2)-8≥1-2(x-1)

2

3求不等式組的非負(fù)整數(shù)解

【答案】1;(2;(3)非負(fù)整數(shù)解為0,12,34,5

【解析】

1)去分母,去括號,移項,合并同類項,系數(shù)化成1即可;

2)先求出不等式的解集,再求出不等式組的解集,即可得出答案.

3)先求出不等式的解集,再求出不等式組的解集,即可求出非負(fù)整數(shù)解

13(x+2)-8≥1-2(x-1)

3x+681-2x+1,

3x+2x22

5x4

;

2

解不等式①,得:x2,

解不等式②,得:x4,

則不等式組的解集為

3

解不等式①,得:x-2,

解不等式②,得:x5,

則不等式組的解集為-2x5

不等式組非負(fù)整數(shù)解0,1,2,3,45

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索研究:已知:△ABC和△CDE都是等邊三角形.

(1)如圖1,若點A、C、E在一條直線上時,我們可以得到結(jié)論:線段AD與BE的數(shù)量關(guān)系為:   ,線段AD與BE所成的銳角度數(shù)為   °;

(2)如圖2,當(dāng)點A、C、E不在一條直線上時,請證明(1)中的結(jié)論仍然成立;

靈活運用:

如圖3,某廣場是一個四邊形區(qū)域ABCD,現(xiàn)測得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,試求水池兩旁B、D兩點之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),根據(jù)勾股定理,則a2+b2=c2,若△ABC不是直角三角形,如圖(2)和圖(3),請你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店進行店慶活動決定購進甲、乙兩種紀(jì)念品若購進甲種紀(jì)念品1,乙種紀(jì)念品2,需要160購進甲種紀(jì)念品2,乙種紀(jì)念品3,需要280.

(1)購進甲乙兩種紀(jì)念品每件各需要多少元?

(2)該商場決定購進甲乙兩種紀(jì)念品100,并且考慮市場需求和資金周轉(zhuǎn)用于購買這些紀(jì)念品的資金不少于6300,同時又不能超過6430則該商場共有幾種進貨方案?

(3)若銷售每件甲種紀(jì)念品可獲利30,每件乙種紀(jì)念品可獲利12,在第(2)問中的各種進貨方案中哪種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點四邊形ABCD(頂點是網(wǎng)格線的交點),按要求畫出四邊形AB1C1D1和四邊形AB2C2D2

(1)以A為旋轉(zhuǎn)中心,將四邊形ABCD順時針旋轉(zhuǎn)90°,得到四邊形AB1C1D1;
(2)以A為位似中心,將四邊形ABCD作位似變換,且放大到原來的兩倍,得到四邊形AB2C2D2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司有AB兩種型號的客車共11輛,它們的載客量(不含司機)、日租金、車輛數(shù)如下表所示,已知這11輛客車滿載時可搭載乘客350人.

A型客車

B型客車

載客量(人/輛)

40

25

日租金(元/輛)

320

200

車輛數(shù)(輛)

a

b

1)求a、b的值;

2)某校七年級師生周日集體參加社會實踐,計劃租用A、B兩種型號的客車共6輛,且租車總費用不超過1700元.

①最多能租用A型客車多少輛?

②若七年級師生共195人,寫出所有的租車方案,并確定最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】華聯(lián)超市用6000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的15件,甲、乙兩種商品的進價和售價如下表:(注:獲利=售價﹣進價)

進價(元/件)

22

30

售價(元/件)

29

40

(1)該商場購進甲、乙兩種商品各多少件?

(2)該超市將購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某地某一天的氣溫隨時間的變化而變化的圖象,請根據(jù)圖象回答:

1)這一天什么時候氣溫最低?最低氣溫是多少?什么時候氣溫最高?最高氣溫是多少?

2)求這一天的最大溫差是多少?

3)請你描述一下這一天氣溫隨時間的變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x,y的方程組 的解為正數(shù),則|k﹣6|+|k+1|=

查看答案和解析>>

同步練習(xí)冊答案