【題目】一幢樓的樓頂端掛著一幅長10米的宣傳條幅AB,某數(shù)學(xué)興趣小組在一次活動中,準(zhǔn)備測量該樓的高度,但被建筑物FGHM擋住,不能直接到達(dá)樓的底部,他們在點D處測得條幅頂端A的仰角∠CDA=45°,向后退8米到E點,測得條幅底端B的仰角∠CEB=30°(點C,D,E在同一直線上,EC⊥AC).請你根據(jù)以上數(shù)據(jù),幫助該興趣小組計算樓高AC(結(jié)果精確到0.01米,參考數(shù)據(jù):≈1.732,≈1.414).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買A,B兩種型號的機(jī)器人搬運材料.已知A型機(jī)器人比B型機(jī)器人每小時多搬運30kg材料,且A型機(jī)器人搬運1000kg材料所用的時間與B型機(jī)器人搬運800kg材料所用的時間相同.
(1)求A,B兩種型號的機(jī)器人每小時分別搬運多少材料;
(2)該公司計劃采購A,B兩種型號的機(jī)器人共20臺,要求每小時搬運材料不得少于2800kg,則至少購進(jìn)A型機(jī)器人多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.
(1)證明:四邊形CEGF是正方形;
(2)探究與證明:
將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖2所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由;
(3)拓展與運用:
正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖3所示,當(dāng)B,E,F三點在一條直線上時,延長CG交AD于點H,若AG=6,GH=2,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E為AB中點,以BE為邊作正方形BEFG,邊EF交CD于點H,在邊BE上取點M使BM=BC,作MN∥BG交CD于點L,交FG于點N.歐兒里得在《幾何原本》中利用該圖解釋了.現(xiàn)以點F為圓心,FE為半徑作圓弧交線段DH于點P,連結(jié)EP,記△EPH的面積為S1,圖中陰影部分的面積為S2.若點A,L,G在同一直線上,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段 AB 經(jīng)過⊙O 的圓心, AC , BD 分別與⊙O 相切于點 C ,D .若 AC =BD = 4 ,∠A=45°,則弧CD的長度為( )
A.πB.2πC.2πD.4π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx+b經(jīng)過點A(0,2),B(﹣4,0)和拋物線y=x2.
(1)求直線的解析式;
(2)將拋物線y=x2沿著x軸向右平移,平移后的拋物線對稱軸左側(cè)部分與y軸交于點C,對稱軸右側(cè)部分拋物線與直線y=kx+b交于點D,連接CD,當(dāng)CD∥x軸時,求平移后得到的拋物線的解析式;
(3)在(2)的條件下,平移后得到的拋物線的對稱軸與x軸交于點E,P為該拋物線上一動點,過點P作拋物線對稱軸的垂線,垂足為Q,是否存在這樣的點P,使以點E,P,Q為頂點的三角形與△AOB相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C將線段AB分成兩部分,若AC2=BCAB(AC>BC),則稱點C為線段AB的黃金分割點.某數(shù)學(xué)興趣小組在進(jìn)行拋物線課題研究時,由黃金分割點聯(lián)想到“黃金拋物線”,類似地給出“黃金拋物線”的定義:若拋物線y=ax2+bx+c,滿足b2=ac(b≠0),則稱此拋物線為黃金拋物線.
(Ⅰ)若某黃金拋物線的對稱軸是直線x=2,且與y軸交于點(0,8),求y的最小值;
(Ⅱ)若黃金拋物線y=ax2+bx+c(a>0)的頂點P為(1,3),把它向下平移后與x軸交于A(+3,0),B(x0,0),判斷原點是否是線段AB的黃金分割點,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=120°,點A,B分別在OM,ON上,且OA=OB=,將射線OM繞點O逆時針旋轉(zhuǎn)得到OM′,旋轉(zhuǎn)角為α(且),作點A關(guān)于直線OM′的對稱點C,畫直線BC交于OM′與點D,連接AC,AD.有下列結(jié)論:
有下列結(jié)論:
①∠BDO + ∠ACD = 90°;
②∠ACB 的大小不會隨著的變化而變化;
③當(dāng) 時,四邊形OADC為正方形;
④面積的最大值為.
其中正確的是________________.(把你認(rèn)為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+b(k<0),經(jīng)過點(6,0),且與坐標(biāo)軸圍成的三角形的面積是9,與函數(shù)y=(x>0)的圖象G交于A,B兩點.
(1)求直線的表達(dá)式;
(2)橫、縱坐標(biāo)都是整數(shù)的點叫作整點.記圖象G在點A、B之間的部分與線段AB圍成的區(qū)域(不含邊界)為W.
①當(dāng)m=2時,直接寫出區(qū)域W內(nèi)的整點的坐標(biāo) ;
②若區(qū)域W內(nèi)恰有3個整數(shù)點,結(jié)合函數(shù)圖象,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com