已知,如圖,BD=CD,BE⊥AC于點E,CF⊥AB于F.
求證:AD是∠BAC的角平分線.
分析:利用“角角邊”證明△BDF和△CDE全等,根據(jù)全等三角形對應邊相等可得DE=DF,再根據(jù)到角的兩邊距離相等的點在角的平分線上證明.
解答:證明:在△BDF和△CDE中,
∠BDF=∠CDE
∠BFD=∠CED=90°
BD=CD

∴△BDF≌△CDE(AAS),
∴DE=DF,
又∵BE⊥AC,CF⊥AB,
∴AD是∠BAC的角平分線.
點評:本題考查了全等三角形的判定與性質(zhì),到角的兩邊距離相等的點在角的平分線上,熟記三角形全等的判定方法和角平分線的判定是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,BD是AC邊上的高,DE⊥BC于E,BE:EC=5:1.若AD=2,AB=8.
求:CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,BD平分∠ABC,CE平分∠ACE,BD與CE交于點I,試說明∠BIC=90°+
12
∠A.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、已知,如圖,BD是∠ABC的平分線,AB=BC,點P在BD上,PM⊥AD,PN⊥CD,垂足分別是M、N.試說明:PM=PN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,BD為⊙O的直徑,點A是劣弧BC的中點,AD交BC于點E,連接AB.
(1)求證:AB2=AE•AD;
(2)過點D作⊙O的切線,與BC的延長線交于點F,若AE=2,ED=4,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,BD、CE是△ABC的兩條高,M是BC的中點.求證:ME=MD.

查看答案和解析>>

同步練習冊答案