【題目】(1)閱讀理解:如圖①,在四邊形ABCD中,AB∥DC,E是BC的中點,若AE是∠BAD的平分線,試判斷AB,AD,DC之間的等量關(guān)系.
解決此問題可以用如下方法:延長AE交DC的延長線于點F,易證△AEB≌△FEC,得到AB=FC,從而把AB,AD,DC轉(zhuǎn)化在一個三角形中即可判斷.
AB、AD、DC之間的等量關(guān)系為 ;
(2)問題探究:如圖②,在四邊形ABCD中,AB∥DC,AF與DC的延長線交于點F,E是BC的中點,若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關(guān)系,并證明你的結(jié)論.
(3)問題解決:如圖③,AB∥CF,AE與BC交于點E,BE:EC=2:3,點D在線段AE上,且∠EDF=∠BAE,試判斷AB、DF、CF之間的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】(1)AD=AB+DC;(2)AB=AF+CF,證明見解析;(3)AB=(CF+DF),證明見解析.
【解析】試題分析:(1)延長AE交DC的延長線于點F,證明△AEB≌△FEC,根據(jù)全等三角形的性質(zhì)得到AB=FC,根據(jù)等腰三角形的判定得到DF=AD,證明結(jié)論;
(2)延長AE交DF的延長線于點G,利用同(1)相同的方法證明;
(3)延長AE交CF的延長線于點G,根據(jù)相似三角形的判定定理得到△AEB∽△GEC,根據(jù)相似三角形的性質(zhì)得到AB=CG,計算即可.
試題解析:(1)如圖①,延長AE交DC的延長線于點F,
∵AB∥DC,∴∠BAF=∠F,
∵E是BC的中點,∴CE=BE,
在△AEB和△FEC中, ,∴△AEB≌△FEC,∴AB=FC,
∵AE是∠BAD的平分線,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,
故答案為:AD=AB+DC;
(2)AB=AF+CF,
證明如下:如圖②,延長AE交DF的延長線于點G,
∵E是BC的中點,∴CE=BE,
∵AB∥DC,∴∠BAE=∠G,
在△AEB和△GEC中, ,∴△AEB≌△GEC,∴AB=GC,
∵AE是∠BAF的平分線,∴∠BAG=∠FAG,
∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;
(3)AB=(CF+DF),
證明如下:如圖③,延長AE交CF的延長線于點G,
∵AB∥CF,∴△AEB∽△GEC,∴=,即AB=CG,
∵AB∥CF,∴∠A=∠G,
∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).
科目:初中數(shù)學 來源: 題型:
【題目】某商店從廠家以21元的價格購進一批商品,該商品可以自行定價,若每件商品售價為元,則可賣出(350-10)件,但物價局限定每件商品加價不能超過進價的20%,商店計劃要賺400元,需要賣出多少件商品?每件商品應售多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】貴陽市某消防支隊在一幢居民樓前進行消防演習,如圖所示,消防官兵利用云梯成功救出在C處的求救者后,發(fā)現(xiàn)在C處正上方17米的B處又有一名求救者,消防官兵立刻升高云梯將其救出,已知點A與居民樓的水平距離是15米,且在A點測得第一次施救時云梯與水平線的夾角∠CAD=60°,求第二次施救時云梯與水平線的夾角∠BAD的度數(shù)(結(jié)果精確到1°).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“知識改變命運,科技繁榮祖國”,我市中小學每年都要舉辦一屆科技運動會,下圖為我市某校今年參加科技運動會航模比賽(包括空模、海模、車模、建模四個類別)的參賽人數(shù)統(tǒng)計圖:
(1)該校參加車模、建模比賽的人數(shù)分別是 人和 人:
(2)該校參加航模比賽的總?cè)藬?shù)是 人,空模所在扇形的圓心角的度數(shù)是 ,并把條形統(tǒng)計圖補充完整.
(3)從全市中小學參加航模比賽選手中隨機抽取80人,其中有32人獲獎,今年我市中小學參加航模比賽人共有2485人,請你估算今年參加航模比賽的獲獎人數(shù)約是多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】18世紀最杰出的瑞士數(shù)學家歐拉,最先把關(guān)于x的多項式用符號“f(x)”表示,如f(x)=﹣3x2+2x﹣1,把x=﹣2時多項式的值表示為f(﹣2),則f(﹣2)=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一塊三角板ABC的直角頂點C放在直尺的一邊PQ上,直尺的另一邊MN與三角板的兩邊AC、BC分別交于兩點E、D,且AD為∠BAC的平分線,∠B=300,∠ADE=150.
(1)求∠BDN的度數(shù);
(2)求證:CD=CE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com