【題目】如圖,在等腰直角△ABC中,∠BAC=90°,AC=AB,以AB為斜邊在△ABC內部作Rt△ABD,連接CD,若∠ADC=135°,S△ABD=9,則線段AD的長度為_____.
【答案】3
【解析】
作輔助線,構建三角形AEB,由旋轉的性質可得△AED和是等腰直角三角形△BED是等腰直角三角形,設AD=AE=x,則ED=BE=x,BD=x×=2x,根據(jù)S△ABD=9,可求得x的值,即AD的長.
將△ADC繞點A順時針旋轉90°得到△AEB,連接ED,
∴∠EAD=90°,AE=AD,∠AEB=∠ADC=135°,
∴△AED是等腰直角三角形,
∴∠AED=∠ADE=45°,
∴∠BED=135°-45°=90°,
∵∠ADB=90°,
∴∠BDE=45°,
∴△BED是等腰直角三角形,
設AD=AE=x,則ED=BE=x,BD=x×=2x,
∵S△ABD=9,
∴ADBD=9,
x2x=9,
x2=9,
x1=3,x2=-3,
∴AD=3,
故答案為:3.
科目:初中數(shù)學 來源: 題型:
【題目】河南省旅游資源豐富,2013~2017年旅游收入不斷增長,同比增速分別為:15.3%,12.7%,15.3%,14.5%,17.1%.關于這組數(shù)據(jù),下列說法正確的是( 。
A. 中位數(shù)是12.7% B. 眾數(shù)是15.3%
C. 平均數(shù)是15.98% D. 方差是0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水平桌面上有甲、乙、丙三個圓柱形容器(容器足夠高),底面半徑之比為,用兩個相同的管子在容器的高度處連通(即管子底端離容器底).現(xiàn)三個容器中,只有甲中有水,水位高,如圖所示.若每分鐘同時向乙和丙注入相同量的水,開始注水分鐘,乙的水位上升,則開始注入__________分鐘的水量后,甲與乙的水位高度之差是.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上有A、B、C三個點,分別表示有理數(shù)-12、-5、5,動點P從A出發(fā),以每秒1個單位的速度向終點C移動,設移動時間為 t秒。
(1)用含t的代數(shù)式表示P到點A和點C的距離:PA=________ , PC=________。
(2)當點P從點A出發(fā),向點C移動,點Q以每秒3個單位從點C出發(fā),向終點A移動,請求出經(jīng)過幾秒點P與點Q兩點相遇?
(3)當點P運動到B點時,點Q從A點出發(fā),以每秒3個單位的速度向C點運動,Q點到達C點后,再立即以同樣的速度返回,運動到終點A,在點Q開始運動后,P、Q兩點之間的距離能否為2個單位?如果能,請求出此時點P表示的數(shù);如果不能,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知E、F是ABCD對角線AC上的兩點,且BE⊥AC,DF⊥AC.
(1)求證:△ABE≌△CDF;
(2)請寫出圖中除△ABE≌△CDF外其余兩對全等三角形(不再添加輔助線).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知∠ABC=90°,△ABC是等腰三角形,點D為斜邊AC的中點,連接DB,過點A作∠BAC的平分線,分別與DB,BC相交于點E,F(xiàn).
(1)求證:BE=BF;
(2)如圖2,連接CE,在不添加任何輔助線的條件下,直接寫出圖中所有的等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】長春外國語學校為了創(chuàng)建全省“最美書屋”,購買了一批圖書,其中科普類圖書平均每本的價格比文學類圖書平均每本的價格多5元.已知學校用12000元購買的科普類圖書的本數(shù)與用9000元購買的文學類圖書的本數(shù)相等,求學校購買的科普類圖書和文學類圖書平均每本的價格各是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是正方形ABCD的對角線BD上一點,⊙O與邊AB,BC都相切,點E,F(xiàn)分別在AD,DC上,現(xiàn)將△DEF沿著EF對折,折痕EF與⊙O相切,此時點D恰好落在圓心O處.若DE=2,則正方形ABCD的邊長是( )
A.3
B.4
C.
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設A1,A2,A3,A4是數(shù)軸上的四個不同點,若|A1A3|=λ|A1A2|,|A1A4|=η|A1A2|,且,則稱A3,A4調和分割A1,A2.已知平面上的點C,D調和分割點A,B,則( )
A. 點C可能是線段AB的中點
B. 點C,D可能同時在線段AB上
C. 點D一定不是線段AB的中點
D. 點C,D可能同時在線段AB的延長線上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com