【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,tanA=.點(diǎn)D,E分別是邊BC,AC上的點(diǎn),且∠EDC=∠A.將△ABC沿DE所在直線對折,若點(diǎn)C恰好落在邊AB上,則DE的長為___

【答案】

【解析】

ABC沿DE對折,點(diǎn)C恰好落在ABF點(diǎn)處,CFDE相交于O點(diǎn),根據(jù)折疊的性質(zhì)得到DECF,OC=OF,再根據(jù)等角的余角相等得∠1=EDC,而∠EDC=A,則∠1=A,所以FC=FA,同理可得FC=FB,于是有CF=AB,OC=AB,然后根據(jù)正切的定義和勾股定理得到BC=4,AB=5,所以OC=,再分別在RtOECRtODC中,利用正切的定義計(jì)算出OE=,OD=,再計(jì)算OE+OD即可.

ABC沿DE對折,點(diǎn)C恰好落在ABF點(diǎn)處,CFDE相交于O點(diǎn),如圖,

DECF,OC=OF,

∵∠EDC+OCD=90°,1+OCD=90°

∴∠1=EDC,

而∠EDC=A,

∴∠1=A,

FC=FA,

同理可得FC=FB,

CF=AB,

OC=AB,

RtABC中,∠C=90°,AC=3,

tanA= ,

BC=4,

AB==5,

OC=

RtOEC中,tan1=tanA=,

OE=,

RtODC中,tanODC=tanA=,

OD=,

DE=OD+OE=+=

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4,EBC中點(diǎn),AEBC于點(diǎn)E,AFCD于點(diǎn)F,CGAE,CGAF于點(diǎn)H,交AD于點(diǎn)G.

(1)求菱形ABCD的面積;(2)求∠CHA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形一腰上的高與另一腰的夾角為38°,則該等腰三角形的底角的度數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們有時(shí)會(huì)碰上形如,的式子,其實(shí)我們可以將其進(jìn)一步分母有理化.

形如的式子還可以用以下方法化簡:.*

1)請用不同的方法化簡(寫出化簡過程):

i)參照分母有理化的方法得______________________________

ii)參照(*)式的化簡方法得______________________________.

2)化簡:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CD、CE分別是△ABC的高和角平分線,∠BACα,∠Bβαβ).

1)若α70°,β40°,求∠DCE的度數(shù);

2)試用αβ的代數(shù)式表示∠DCE的度數(shù)(直接寫出結(jié)果);

3)如圖,若CE是△ABC外角∠ACF的平分線,交BA延長線于點(diǎn)E,且αβ30°,求∠DCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

小明遇到一個(gè)問題:已知:如圖1,在ABC中,∠BAC=120°,ABC=40°,試過ABC的一個(gè)頂點(diǎn)畫一條直線,將此三角形分割成兩個(gè)等腰三角形.

他的做法是:如圖2,首先保留最小角∠C,然后過三角形頂點(diǎn)A畫直線交BC于點(diǎn)D. 將∠BAC分成兩個(gè)角,使∠DAC=20°ABC即可被分割成兩個(gè)等腰三角形.

喜歡動(dòng)腦筋的小明又繼續(xù)探究:當(dāng)三角形內(nèi)角中的兩個(gè)角滿足怎樣的數(shù)量關(guān)系時(shí),此三角形一定可以被過頂點(diǎn)的一條直線分割成兩個(gè)等腰三角形.

他的做法是:

如圖3,先畫ADC ,使DA=DC,延長AD到點(diǎn)B,使BCD也是等腰三角形,如果DC=BC,那么∠CDB =ABC,因?yàn)椤?/span>CDB=2A,所以∠ABC= 2A.于是小明得到了一個(gè)結(jié)論:

當(dāng)三角形中有一個(gè)角是最小角的2倍時(shí),則此三角形一定可以被過頂點(diǎn)的一條直線分割成兩個(gè)等腰三角形.

請你參考小明的做法繼續(xù)探究:當(dāng)三角形內(nèi)角中的兩個(gè)角滿足怎樣的數(shù)量關(guān)系時(shí),此三角形一定可以被過頂點(diǎn)的一條直線分割成兩個(gè)等腰三角形.請直接寫出你所探究出的另外兩條結(jié)論(不必寫出探究過程或理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙只捕撈船同時(shí)從A港出海捕魚,甲船以每小時(shí)15 km的速度沿北偏西60°方向前進(jìn),乙船以每小時(shí)15 km的速度沿東北方向前進(jìn).甲船航行2 h到達(dá)C處,此時(shí)甲船發(fā)現(xiàn)漁具丟在了乙船上,于是甲船快速(勻速)沿北偏東75°的方向追趕乙船,結(jié)果兩船在B處相遇.問:

(1)甲船從C處出發(fā)追趕上乙船用了多少時(shí)間?

(2)甲船追趕乙船的速度是每小時(shí)多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的面積為1cm2,對角線交于點(diǎn)O;以AB、AO為鄰邊作平行四邊形AOC1B,對角線交于點(diǎn)O1;以AB、AO1為鄰邊作平行四邊形AO1C2B…;依此類推,則平行四邊形AO2016C2017B的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中, ∠C=90°,邊AB的垂直平分線交AB、AC分別于點(diǎn)D,點(diǎn)E,連結(jié)BE.

(1)若∠A=40°,求∠CBE的度數(shù).

(2)若AB=10,BC=6,求△BCE的面積.

查看答案和解析>>

同步練習(xí)冊答案