如圖1,在△ABC中,∠ABC,∠ACB的角平分線交于點(diǎn)O,則∠BOC=90°+
1
2
∠A=
1
2
×180°+
1
2
∠A.
如圖2,在△ABC中,∠ABC,∠ACB的兩條三等分角線分別對(duì)應(yīng)交于O1,O2,則∠BO1C=
2
3
×180°+
1
3
∠A,∠BO2C=
1
3
×180°+
2
3
∠A.
根據(jù)以上閱讀理解,你能猜想(n等分時(shí),內(nèi)部有n-1個(gè)點(diǎn))(用n的代數(shù)式表示)∠BOn-1C=( 。
精英家教網(wǎng)
A、
2
n
×180°+
1
n
∠A
B、
1
n
×180°+
2
n
∠A
C、
n
n-1
×180°+
1
n-1
∠A
D、
1
n
×180°+
n-1
n
∠A
分析:本題可分別將n=1,2,3…的情況列出來(lái),分別解出∠BOC的度數(shù),再進(jìn)行總結(jié)歸納即可.
解答:解:n=1時(shí),∠BOn-1C=180°-∠A;
n=2時(shí),∠BOn-1C=180°-
1
2
(180°-∠A)=
1
2
×
180°+
1
2
∠A;
n=3時(shí),∠BOn-1C=180°-
2
3
(180°-∠A)=
1
3
×
180°+
2
3
∠A;

所以當(dāng)n=n時(shí),∠BOn-1C=
1
n
×180°+
n-1
n
∠A.
故答案選D.
點(diǎn)評(píng):本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對(duì)于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖1,在△ABC中,AB=AC,點(diǎn)D是邊BC的中點(diǎn).以BD為直徑作圓O,交邊AB于點(diǎn)P,連接PC,交AD于點(diǎn)E.
(1)求證:AD是圓O的切線;
(2)當(dāng)∠BAC=90°時(shí),求證:
PE
CE
=
1
2

(3)如圖2,當(dāng)PC是圓O的切線,E為AD中點(diǎn),BC=8,求AD的長(zhǎng).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請(qǐng)解答下列問(wèn)題:
(1)寫出一個(gè)你所學(xué)過(guò)的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點(diǎn)D在BC上,且CD=CA,點(diǎn)E、F分別為BC、AD的中點(diǎn),連接EF并延長(zhǎng)交AB于點(diǎn)G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點(diǎn)D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點(diǎn)H,圖中是否存在等鄰角四邊形,若存在,指出是哪個(gè)四邊形,不必證明;若不存在,請(qǐng)說(shuō)精英家教網(wǎng)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
BC2+CD2
;
(2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關(guān)系,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點(diǎn)D是垂足,點(diǎn)E是BC的中點(diǎn),規(guī)定:λA=
DE
BD
.如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點(diǎn)O.
(1)求證:∠AOC=90°+
12
∠ABC;
(2)當(dāng)∠ABC=90°時(shí),且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案