觀察下列等式:
11-2
=
9
=3
(即3×1)
1111-22
=
1089
=33
(即3×11)
111111-222
=
110889
=333(即3×111)由此猜想
1111…1
4008個(gè)
-
22…2
2004個(gè)
=
 
分析:根據(jù)題意找出規(guī)律,求出所求式子的值即可.
解答:解:∵
11-2
=
9
=3
(即3×1),
1111-22
=
1089
=33
(即3×11),
111111-222
=
110889
=333(即3×111),
1111…1
4008個(gè)
-
22…2
2004個(gè)
=3×111…1(共2004個(gè)).
點(diǎn)評(píng):本題比較簡(jiǎn)單屬規(guī)律性題目,只要根據(jù)所給式子找出規(guī)律即可解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,將以上三個(gè)等式兩邊分別相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并寫出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
;
(2)計(jì)算:
1
1×2
+
1
2×3
+
1
3×4
+
+
1
n(n+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4

把以上三個(gè)等式兩邊分別相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并寫出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)直接寫出下列各式的計(jì)算結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2008×2009
=
2008
2009
2008
2009
;
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1

(3)探究并計(jì)算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2006×2008

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

附加題:
(1)已知|a-2|+|b+6|=0,則a+b=
-4
-4

(2)觀察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,將以上三個(gè)等式相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

①猜想并寫出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

②直接寫出結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2006×2007
=
2006
2007
2006
2007

(3)在數(shù)軸上有兩點(diǎn),它們到原點(diǎn)的距離分別是2和3,問這兩點(diǎn)之間的距離是多少?
(4)求|
1
2
-1|+|
1
3
-
1
2
|+…+|
1
99
-
1
98
|+|
1
100
-
1
99
|的值.
(5)如圖所示,數(shù)軸上有四點(diǎn)A,B,C,D分別表示有理數(shù)a,b,c,d,用“<”把表示a,b,c,d,|a|,|b|,-|c|,-|d|的數(shù)連接起來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,將以上三個(gè)等式相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并寫出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)直接寫出結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2006×2007
=
2006
2007
2006
2007

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)直接寫出下列各式的計(jì)算結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2006×2007
=
2006
2007
2006
2007
;
(2)探究并計(jì)算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2006×2008

查看答案和解析>>

同步練習(xí)冊(cè)答案