(2005•沈陽)如圖,PB是⊙O的切線,A是切點,D是上一點,若∠BAC=70°,則∠ADC的度數(shù)是    度.
【答案】分析:設(shè)點E是優(yōu)弧AC上的一點,由弦切角定理知,∠E=∠BAC=70°,再由圓內(nèi)接四邊形的對角互補知,∠D=180°-∠E=110°.
解答:解:如圖,∵在優(yōu)弧AC上取點E,連接AE,CE,
PB是⊙O的切線,∠BAC=70°,
∴∠E=70°,
∴∠D=180°-∠E=110°.
點評:本題利用了弦切角定理和圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2005•沈陽)如圖,已知直線y1=x+m與x軸、y軸分別交于點A、B,與雙曲線(x<0)分別交于點C、D,且C點的坐標(biāo)為(-1,2).
(1)分別求出直線AB及雙曲線的解析式;
(2)求出點D的坐標(biāo);
(3)利用圖象直接寫出:當(dāng)x在什么范圍內(nèi)取值時,y1>y2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•沈陽)如圖,Rt△OAC是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點O與原點重合,點A在x軸上,點C在y軸上,OC=,∠CAO=30度.將Rt△OAC折疊,使OC邊落在AC邊上,點O與點D重合,折痕為CE.
(1)求折痕CE所在直線的解析式;
(2)求點D的坐標(biāo);
(3)設(shè)點M為直線CE上的一點,過點M作AC的平行線,交y軸于點N,是否存在這樣的點M,使得以M、N、D、C為頂點的四邊形是平行四邊形?若存在,請求出符合條件的點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省成都市武侯區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2005•沈陽)如圖,已知直線y1=x+m與x軸、y軸分別交于點A、B,與雙曲線(x<0)分別交于點C、D,且C點的坐標(biāo)為(-1,2).
(1)分別求出直線AB及雙曲線的解析式;
(2)求出點D的坐標(biāo);
(3)利用圖象直接寫出:當(dāng)x在什么范圍內(nèi)取值時,y1>y2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年遼寧省沈陽市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•沈陽)如圖,Rt△OAC是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點O與原點重合,點A在x軸上,點C在y軸上,OC=,∠CAO=30度.將Rt△OAC折疊,使OC邊落在AC邊上,點O與點D重合,折痕為CE.
(1)求折痕CE所在直線的解析式;
(2)求點D的坐標(biāo);
(3)設(shè)點M為直線CE上的一點,過點M作AC的平行線,交y軸于點N,是否存在這樣的點M,使得以M、N、D、C為頂點的四邊形是平行四邊形?若存在,請求出符合條件的點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年遼寧省沈陽市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•沈陽)如圖,已知直線y1=x+m與x軸、y軸分別交于點A、B,與雙曲線(x<0)分別交于點C、D,且C點的坐標(biāo)為(-1,2).
(1)分別求出直線AB及雙曲線的解析式;
(2)求出點D的坐標(biāo);
(3)利用圖象直接寫出:當(dāng)x在什么范圍內(nèi)取值時,y1>y2?

查看答案和解析>>

同步練習(xí)冊答案