【題目】計算:(π﹣1) +|5﹣ |﹣ .
【答案】解:原式=1+ + ﹣5﹣8=﹣12+ .
【解析】原式第一項(xiàng)利用零指數(shù)冪法則計算,第二項(xiàng)利用負(fù)整數(shù)指數(shù)冪法則計算,第三項(xiàng)利用絕對值的代數(shù)意義化簡,最后一項(xiàng)利用二次根式性質(zhì)計算即可得到結(jié)果.
【考點(diǎn)精析】利用零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小偉遇到這樣一個問題:如圖1,在△ABC(其中∠BAC是一個可以變化的角)中,AB=2,AC=4,以BC為邊在BC的下方作等邊△PBC,求AP的最大值.
小偉是這樣思考的:利用變換和等邊三角形將邊的位置重新組合.他的方法是以點(diǎn)B為旋轉(zhuǎn)中心將△ABP逆時針旋轉(zhuǎn)60°得到△A′BC,連接A′A,當(dāng)點(diǎn)A落在A′C上時,此題可解(如圖2).
(1)請你回答:AP的最大值是 .
(2)參考小偉同學(xué)思考問題的方法,解決下列問題:
如圖3,等腰Rt△ABC.邊AB=4,P為△ABC內(nèi)部一點(diǎn),請寫出求AP+BP+CP的最小值長的解題思路.
提示:要解決AP+BP+CP的最小值問題,可仿照題目給出的做法.把△ABP繞B點(diǎn)逆時針旋轉(zhuǎn)60,得到△A′BP′.
①請畫出旋轉(zhuǎn)后的圖形
②請寫出求AP+BP+CP的最小值的解題思路(結(jié)果可以不化簡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我區(qū)注重城市綠化提高市民生活質(zhì)量,新建林蔭公園計劃購買甲、乙兩種樹苗共800株,甲種樹苗每株12元,乙種樹苗每株15元.相關(guān)資料表明:甲、乙兩種樹苗的成活率分別為85%、90%.
(1)若購買這兩種樹苗共用去10500元,則甲、乙兩種樹苗各購買多少株?
(2)若要使這批樹苗的總成活率不低于88%,則甲種樹苗至多購買多少株?
(3)在(2)的條件下,應(yīng)如何選購樹苗,使購買樹苗的費(fèi)用最低?并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(10,0),(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動,當(dāng)△ODP是腰長為5的等腰三角形時,點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知∠A=∠F,∠C=∠D,按圖填空,并在括號內(nèi)注明理由.
∵∠A=∠F()
∴∥()
∴∠D=∠ABD()
又∵∠D=∠C()
∴∠C=∠ABD()
∴∥()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠AOB=60°,點(diǎn)B坐標(biāo)為(2,0),線段OA的長為6.將△AOB繞點(diǎn)O逆時針旋轉(zhuǎn)60°后,點(diǎn)A落在點(diǎn)C處,點(diǎn)B落在點(diǎn)D處.
(1)請在圖中畫出△COD;
(2)求點(diǎn)A旋轉(zhuǎn)過程中所經(jīng)過的路程(精確到0.1).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com