【題目】閱讀:如圖1,在△ABC中,BE是AC邊上的中線, D是BC邊上的一點(diǎn),CD:BD=1:2,AD與BE相交于點(diǎn)P,求的值.小昊發(fā)現(xiàn),過點(diǎn)A作AF∥BC,交BE的延長線于點(diǎn)F,通過構(gòu)造△AEF,經(jīng)過推理和計(jì)算能夠使問題得到解決(如圖2).
(1)的值為 ;
(2)參考小昊思考問題的方法,解決問題:
如圖3,在△ABC中,∠ACB=90°,點(diǎn)D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點(diǎn)P,DC:BC:AC=1:2:3 .
求 的值;
若CD=2,求BP的長.
【答案】(1);(2)①,②6.
【解析】
試題分析:(1)根據(jù)輔助線的作法可得△AEF≌△CEB,△AFP∽△DBP,然后利用它們的性質(zhì)可得=;(2)①過點(diǎn)A作AF∥DB,交BE的延長線于點(diǎn)F,可得△AEF≌△CEB,△AFP∽△DBP,然后利用它們的性質(zhì)可得=;②根據(jù)條件DC:BC:AC=1:2:3 ,CD=2,得出BC, AC,CE,AE的長,由勾股定理可得 EF的長,再利用△AFP∽△DBP的性質(zhì)可求出BP的長.
試題解析:(1)的值為.
(2)①過點(diǎn)A作AF∥DB,交BE的延長線于點(diǎn)F,
∵DC︰BC=1︰2,
∴BC=2k.
∴DB=DC+BC=3k.
∵E是AC中點(diǎn),
∴AE=CE.
∵AF∥DB,
∴∠F=∠1.
又∵∠2=∠3,
∴△AEF≌△CEB.
∴AF=BC=2k.
∵AF∥DB,
∴△AFP∽△DBP.
∴ .
∴= .
②∵DC:BC:AC=1:2:3 ,CD=2,∴BC=4 AC=6
∴ CE=AE=AC =3
∴ 由勾股定理可得: EF=5,∴BF=10
∵ =,△AFP∽△DBP,
∴
∴BP=6
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣1,0),B(1,1),把線段AB平移,使點(diǎn)B移動(dòng)到點(diǎn)D(3,4)處,這時(shí)點(diǎn)A移動(dòng)到點(diǎn)C處.
(1)寫出點(diǎn)C的坐標(biāo)__________;
(2)求經(jīng)過C、D的直線與y軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了從甲、乙兩名選手中選拔出一名參加射擊比賽,現(xiàn)對他們的射擊水平進(jìn)行一次測驗(yàn),兩個(gè)人在相同條件下各射靶10次,為了比較兩個(gè)人的成績,制作了如下統(tǒng)計(jì)圖表:
甲、乙射擊成績統(tǒng)計(jì)表
(1)請補(bǔ)全上述統(tǒng)計(jì)表.
(2)如果規(guī)定成績較穩(wěn)定者勝出,你認(rèn)為誰勝出?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+8與x軸、y軸分別相交于點(diǎn)A、B,設(shè)M是OB上一點(diǎn),若將△ABM沿AM折疊,使點(diǎn)B恰好落在x軸上的點(diǎn)B′處.求:
(1)點(diǎn)B′的坐標(biāo);
(2)直線AM所對應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
我們知道,四邊形具有不穩(wěn)定性,容易變形,如圖1,一個(gè)矩形發(fā)生變形后成為一個(gè)平行四邊形,設(shè)這個(gè)平行四邊形相鄰兩個(gè)內(nèi)角中較小的一個(gè)內(nèi)角為α,我們把的值叫做這個(gè)平行四邊形的變形度.
(1)若矩形發(fā)生變形后的平行四邊形有一個(gè)內(nèi)角是120度,則這個(gè)平行四邊形的變形是 .
猜想證明:
(2)設(shè)矩形的面積為S1,其變形后的平行四邊形面積為S2,試猜想S1,S2, 之間的數(shù)量關(guān)系,并說明理由;
拓展探究:
(3)如圖2,在矩形ABCD中,E是AD邊上的一點(diǎn),且AB2=AEAD,這個(gè)矩形發(fā)生變形后為平行四邊形A1B1C1D1,E1為E的對應(yīng)點(diǎn),連接B1E1,B1D1,若矩形ABCD的面積為4 (m>0),平行四邊形A1B1C1D1的面積為2(m>0),試求∠A1E1B1+∠A1D1B1的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列一次函數(shù)中,y隨x增大而增大的是( 。
A. y=﹣3x B. y=x﹣2 C. y=﹣2x+3 D. y=3﹣x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】夜里將點(diǎn)燃的蚊香迅速繞一圈,可劃出一個(gè)曲線,這是因?yàn)椋?/span> )
A.面對成體B.線動(dòng)成面C.點(diǎn)動(dòng)成線D.面面相交成線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列因式分解正確的是( )
A. x2﹣y2=(x﹣y)2 B. xy﹣x=x(y﹣1)
C. a2+a+1=(a+1)2 D. 2x+y=2(x+y)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com