如圖作一個(gè)等腰直角三角形,以數(shù)軸的原點(diǎn)為旋轉(zhuǎn)中心,將過原點(diǎn)的斜邊順時(shí)針旋轉(zhuǎn),使斜邊的另一端點(diǎn)落在數(shù)軸正半軸的點(diǎn)P處,則點(diǎn)P表示的數(shù)是數(shù)學(xué)公式;這種研究和解決問題的方式,體現(xiàn)的數(shù)學(xué)思想方法是


  1. A.
    數(shù)形結(jié)合
  2. B.
    代入
  3. C.
    換元
  4. D.
    歸納
A
分析:根據(jù)題意,分析題意中作圖的方法,體會(huì)其中的思想,即可得答案.
解答:根據(jù)題意,先根據(jù)勾股定理,得到長為的線段,
再旋轉(zhuǎn)可得P表示的數(shù),從中體現(xiàn)了數(shù)形結(jié)合的思想,
故選A.
點(diǎn)評(píng):本題考查學(xué)生對數(shù)學(xué)常見方法的把握,要求學(xué)生了解常見的數(shù)學(xué)思想、方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•錦州)如圖1,等腰直角三角板的一個(gè)銳角頂點(diǎn)與正方形ABCD的頂點(diǎn)A重合,將此三角板繞點(diǎn)A旋轉(zhuǎn),使三角板中該銳角的兩條邊分別交正方形的兩邊BC,DC于點(diǎn)E,F(xiàn),連接EF.
(1)猜想BE、EF、DF三條線段之間的數(shù)量關(guān)系,并證明你的猜想;
(2)在圖1中,過點(diǎn)A作AM⊥EF于點(diǎn)M,請直接寫出AM和AB的數(shù)量關(guān)系;
(3)如圖2,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點(diǎn),∠EAF=
12
∠BAD,連接EF,過點(diǎn)A作AM⊥EF于點(diǎn)M,試猜想AM與AB之間的數(shù)量關(guān)系.并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,將一塊腰長為
5
的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(-1,0),點(diǎn)B在拋物線y=ax2+ax-2上,
(1)點(diǎn)A的坐標(biāo)為
(0,2)
(0,2)
,點(diǎn)B的坐標(biāo)為
(-3,1)
(-3,1)
;拋物線的解析式為
y=
1
2
x2+
1
2
x-2
y=
1
2
x2+
1
2
x-2

(2)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP是以AC為直角邊的直角三角形?若存在,請求出所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)若點(diǎn)D是(1)中所求拋物線在第三象限內(nèi)的一個(gè)動(dòng)點(diǎn),連接BD、CD.當(dāng)△BCD的面積最大時(shí),求點(diǎn)D的坐標(biāo).
(4)若點(diǎn)P是(1)中所求拋物線上一個(gè)動(dòng)點(diǎn),以線段AB、BP為鄰邊作平行四邊形ABPQ.當(dāng)點(diǎn)Q落在x軸上時(shí),直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年中考數(shù)學(xué)二輪精品復(fù)習(xí)歸納猜想型問題練習(xí)卷(解析版) 題型:解答題

如圖1,等腰直角三角板的一個(gè)銳角頂點(diǎn)與正方形ABCD的頂點(diǎn)A重合,將此三角板繞點(diǎn)A旋轉(zhuǎn),使三角板中該銳角的兩條邊分別交正方形的兩邊BC,DC于點(diǎn)EF,連接EF


1)猜想BE、EF、DF三條線段之間的數(shù)量關(guān)系,并證明你的猜想;
2)在圖1中,過點(diǎn)AAMEF于點(diǎn)M,請直接寫出AMAB的數(shù)量關(guān)系;
3)如圖2,將RtABC沿斜邊AC翻折得到RtADC,EF分別是BC,CD邊上的點(diǎn),EAF=BAD,連接EF,過點(diǎn)AAMEF于點(diǎn)M,試猜想AMAB之間的數(shù)量關(guān)系.并證明你的猜想.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(遼寧錦州卷)數(shù)學(xué)(解析版) 題型:解答題

如圖1,等腰直角三角板的一個(gè)銳角頂點(diǎn)與正方形ABCD的頂點(diǎn)A重合,將此三角板繞點(diǎn)A旋轉(zhuǎn),使三角板中該銳角的兩條邊分別交正方形的兩邊BC,DC于點(diǎn)E,F(xiàn),連接EF.

(1)猜想BE、EF、DF三條線段之間的數(shù)量關(guān)系,并證明你的猜想;

(2)在圖1中,過點(diǎn)A作AM⊥EF于點(diǎn)M,請直接寫出AM和AB的數(shù)量關(guān)系;

(3)如圖2,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點(diǎn),∠EAF=∠BAD,連接EF,過點(diǎn)A作AM⊥EF于點(diǎn)M,試猜想AM與AB之間的數(shù)量關(guān)系.并證明你的猜想.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年遼寧省錦州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,等腰直角三角板的一個(gè)銳角頂點(diǎn)與正方形ABCD的頂點(diǎn)A重合,將此三角板繞點(diǎn)A旋轉(zhuǎn),使三角板中該銳角的兩條邊分別交正方形的兩邊BC,DC于點(diǎn)E,F(xiàn),連接EF.
(1)猜想BE、EF、DF三條線段之間的數(shù)量關(guān)系,并證明你的猜想;
(2)在圖1中,過點(diǎn)A作AM⊥EF于點(diǎn)M,請直接寫出AM和AB的數(shù)量關(guān)系;
(3)如圖2,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點(diǎn),∠EAF=∠BAD,連接EF,過點(diǎn)A作AM⊥EF于點(diǎn)M,試猜想AM與AB之間的數(shù)量關(guān)系.并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊答案