【題目】某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品有四樣:A.韭菜包,B.豆沙包,C.雞蛋,D.油條.超市約定:“隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.”
(1)按約定,某顧客該天“早餐得到兩個雞蛋”是 事件(填“隨機”“必然”或“不可能”):
(2)請用列表或畫樹狀圖的方法,求出某顧客該天“早餐剛好得到一個韭菜包和一根油條”的概率.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進行了探究,探究過程如下.
(1)補全下表,在所給坐標系中畫出函數(shù)的圖象:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | 0 | ﹣1 | 0 | … |
(2)觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
(3)進一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個交點,所以對應(yīng)方程x2﹣2|x|=0有 個實數(shù)根;
②方程x2﹣2|x|=2有 個實數(shù)根;
③關(guān)于x的方程x2﹣2|x|=a有4個實數(shù)根,a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⑴ 問題發(fā)現(xiàn)
⑴ 如圖1,△ABC和△CDE均為等邊三角形,直線AD和直線BE交于點F.
填空:①的度數(shù)是________;②線段AD,BE之間的數(shù)量關(guān)系為________;
⑵ 類比探究
如圖2,△ABC和△CDE均為等腰直角三角形,,,,直線AD和直線BE交于點F.請判斷的度數(shù)及線段AD,BE之間的數(shù)量關(guān)系,并說明理由.
⑶ 解決問題
如圖3,在△ABC中,,,,點D在AB邊上,于點E,,將△ADE繞著點A在平面內(nèi)旋轉(zhuǎn),請直接寫出直線DE經(jīng)過點B時,點C到直線DE的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園手機”現(xiàn)象越來越受到社會的關(guān)注.“五一”期間,小記者劉銘隨機調(diào)查了城區(qū)若干名學(xué)生和家長對中學(xué)生帶手機現(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:
(1)求這次調(diào)查的家長人數(shù),并補全圖①;
(2)求圖②中表示家長“贊成”的圓心角的度數(shù);
(3)如果該市有8萬名初中生,持“無所謂”態(tài)度的學(xué)生大約有多少人?
(4)從這次接受調(diào)查的家長與學(xué)生中隨機抽查一個,恰好是“無所謂”態(tài)度的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙的直徑,過點A作⊙的切線并在其上取一點C,連接OC交⊙于點D,BD的延長線交AC于E,連接AD.
(1)求證:;
(2)若AB=2,,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的兩邊AD、AB的長分別為3、8,邊BC落在x軸上,E是DC的中點,連接AE.
(1)若點B坐標為(﹣6,0),求直線AE的表達式;
(2)反比例函數(shù)y=(x<0)的圖象經(jīng)過點E,與AB交于點F,若AF﹣AE=2,求反比例函數(shù)的表達式;
(3)在(2)的條件下,連接矩形ABCD兩對邊AD與BC的中點M、N,設(shè)線段MN與反比例函數(shù)圖象交于點P,將線段MN沿x軸向右平移n個單位,若MP<NP,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量(萬件)與銷售單價(元)之間的關(guān)系可以近似地看作一次函數(shù)(利潤=售價﹣制造成本)
(1)寫出每月的利潤(萬元)與銷售單價(元)之間的函數(shù)關(guān)系式;
(2)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于40元,如果廠商每月的制造成本不超過540萬元,那么當(dāng)銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式;
(3)登山多長時間時,甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線l上有A,B兩個觀測站,A在B的正東方向2千米處.有一艘小船在觀測點A北偏西60°的方向上航行,一段時間后,到達點C處,此時,從觀測點B測得小船在北偏西15°方向上.求點C與點B之間的距離.(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com