精英家教網 > 初中數學 > 題目詳情
如圖,AC是平行四邊形ABCD的對角線.
(1)請按如下步驟在圖中完成作圖(保留作圖痕跡):
①分別以A,C為圓心,以大于AC長為半徑畫弧,弧在AC兩側的交點分別為P,Q.
②連接PQ,PQ分別與AB,AC,CD交于點E,O,F;
(2)求證:AE=CF.
【答案】分析:(1)熟練用尺規(guī)作一條線段的垂直平分線;
(2)根據所作的是線段的垂直平分線結合平行四邊形的性質,根據ASA證明三角形全等.再根據全等三角形的性質進行證明.
解答:解:(1)作圖,

(2)證明:根據作圖知,PQ是AC的垂直平分線,
∴AO=CO,且EF⊥AC.
∵四邊形ABCD是平行四邊形
∴∠OAE=∠OCF.
∴△OAE≌△OCF(ASA).
∴AE=CF.
點評:掌握尺規(guī)作圖的方法,作圖中的條件就是第二問中的已知條件,正確進行尺規(guī)作圖是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

7、如圖,要使平行四邊行ABCD成為矩形,需添加的條件是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•畢節(jié)地區(qū))如圖①,有一張矩形紙片,將它沿對角線AC剪開,得到△ACD和△A′BC′.
(1)如圖②,將△ACD沿A′C′邊向上平移,使點A與點C′重合,連接A′D和BC,四邊形A′BCD是
平行四邊
平行四邊
形;
(2)如圖③,將△ACD的頂點A與A′點重合,然后繞點A沿逆時針方向旋轉,使點D、A、B在同一直線上,則旋轉角為
90
90
度;連接CC′,四邊形CDBC′是
直角梯
直角梯
形;
(3)如圖④,將AC邊與A′C′邊重合,并使頂點B和D在AC邊的同一側,設AB、CD相交于E,連接BD,四邊形ADBC是什么特殊四邊形?請說明你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

【解析】要證△ADF≌△CBE,因為AE=CF,則兩邊同時加上EF,得到AF=CE,又因為ABCD是平行四邊形,得出AD=CB,∠DAF=∠BCE,從而根據SAS推出兩三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB

 

查看答案和解析>>

科目:初中數學 來源: 題型:

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中數學 來源:2012屆山東省東營濟軍生產基地實驗學校九年級上學期階段檢測數學卷(帶解析) 題型:解答題

已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

同步練習冊答案