【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+k與雙曲線y=(x>0)交于點(diǎn)A(1,a).
(1)求a,k的值;
(2)已知直線l過(guò)點(diǎn)D(2,0)且平行于直線y=kx+k,點(diǎn)P(m,n)(m>3)是直線l上一動(dòng)點(diǎn),過(guò)點(diǎn)P分別作x軸、y軸的平行線,交雙曲線y=(x>0)于點(diǎn)M、N,雙曲線在點(diǎn)M、N之間的部分與線段PM、PN所圍成的區(qū)域(不含邊界)記為W.橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
①當(dāng)m3 時(shí),直接寫出區(qū)域W 內(nèi)的整點(diǎn)個(gè)數(shù);
②若區(qū)域W 內(nèi)有整點(diǎn),且個(gè)數(shù)不超過(guò) 5 個(gè),結(jié)合圖象,求 m 的取值范圍.
【答案】(1),(2)0,(3)<.
【解析】
(1)利用A(1,a)是兩個(gè)函數(shù)的交點(diǎn)可得答案.
(2)先求平行且過(guò)D的直線解析式,根據(jù)題意畫出圖形,觀察條件區(qū)域即可得到①②的答案.
解:(1)把A(1,a)代入得,
所以A(1,4).代入,所以,解得:.
(2)①∵直線l過(guò)點(diǎn)D(2,0)且平行于直線y=2x+2,
∴直線的解析式為y=2x-4.
當(dāng)時(shí),,
∴點(diǎn)P的坐標(biāo)為(3,2).
依照題意畫出圖象,如下圖所示.
觀察圖形,可知:區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù)是0.
②如下圖,若區(qū)域W 內(nèi)有整點(diǎn),且個(gè)數(shù)不超過(guò)5個(gè),結(jié)合圖象得,P在線段QH上,且不與H重合,由圖像知:Q(4,4),
由 解得: 或
所以:H
所以:<
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD邊長(zhǎng)為8,M,N分別是邊BC,CD上的兩個(gè)動(dòng)點(diǎn),且AM⊥MN,則AN的最小值是( 。
A.8B.4C.10D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),瓊海市在國(guó)際和國(guó)內(nèi)的知名度越來(lái)越大,帶動(dòng)旅游事業(yè)蓬勃發(fā)展,吸引大批海內(nèi)外游客前來(lái)觀光旅游、購(gòu)物度假,下面的圖1和2分別反映了該市2011-2014年游客總?cè)藬?shù)和旅游業(yè)總收入情況.根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)2014年游客總?cè)藬?shù)為 萬(wàn)人次,旅游業(yè)總收入為 萬(wàn)元;
(2)在2012年,2013年,2014年這三年中,旅游業(yè)總收入增長(zhǎng)幅度最大的是 年,這一年的旅游業(yè)總收入比上一年增長(zhǎng)的百分率為 (精確到1%);
(3)據(jù)統(tǒng)計(jì),2014年瓊海共接待國(guó)內(nèi)游客1200萬(wàn)人,人均消費(fèi)約700元.求海外游客人均消費(fèi)約多少元?(注:旅游收入=游客人數(shù)×游客的人均消費(fèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A1,A2,…,A2019在函數(shù)y=x2位于第二象限的圖象上,點(diǎn)B1,B2,…,B2011在函數(shù)y=x2位于第一象限的圖象上,點(diǎn)C1,C2,…,C2019在y軸的正半軸上,若四邊形OA1C1B1、C1A2C2B2,…,C2018A2019C2019B2019都是正方形,則正方形C2018A2019C2019B2019的邊長(zhǎng)_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將拋物線M1:y=ax2+4x向右平移3個(gè)單位,再向上平移3個(gè)單位,得到拋物線M2,直線y=x與M1的一個(gè)交點(diǎn)記為A,與M2的一個(gè)交點(diǎn)記為B,點(diǎn)A的橫坐標(biāo)是﹣3.
(1)求a的值及M2的表達(dá)式;
(2)點(diǎn)C是線段AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)C作x軸的垂線,垂足為D,在CD的右側(cè)作正方形CDEF.
①當(dāng)點(diǎn)C的橫坐標(biāo)為2時(shí),直線y=x+n恰好經(jīng)過(guò)正方形CDEF的頂點(diǎn)F,求此時(shí)n的值;
②在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,若直線y=x+n與正方形CDEF始終沒(méi)有公共點(diǎn),求n的取值范圍(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小華設(shè)計(jì)的“作一個(gè)角等于已知角的2倍”的尺規(guī)作圖過(guò)程.
已知:.
求作:,使得.
作法:如圖,
①在射線上任取一點(diǎn);
②作線段的垂直平分線,交于點(diǎn),交于點(diǎn);
③連接;
所以即為所求作的角.
根據(jù)小華設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī)補(bǔ)全圖形(保留作圖痕跡);
(2)完成下面的證明(說(shuō)明:括號(hào)里填寫推理的依據(jù)).
證明:∵是線段的垂直平分線,
∴______(______)
∴.
∵(______)
∴.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出如下規(guī)定:兩個(gè)圖形和,點(diǎn)為上任一點(diǎn),點(diǎn)為上任一點(diǎn),如果線段的長(zhǎng)度存在最小值,就稱該最小值為兩個(gè)圖形和之間的距離.
在平面直角坐標(biāo)系xOy中,0為坐標(biāo)原點(diǎn).
(1)點(diǎn)的坐標(biāo)為,則點(diǎn)和射線之間的距離為______,點(diǎn)和射線之間的距離為 .
(2)如果直線和雙曲線之間的距離為,那么____;(可在圖1中進(jìn)行研究)
(3)點(diǎn)的坐標(biāo)為,將射線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn),得到射線,在坐標(biāo)平面內(nèi)所有和射線之間的距離相等的點(diǎn)所組成的圖形記為圖形.
①請(qǐng)?jiān)趫D2中畫出圖形,井描述圖形的組成部分:(若涉及平面中某個(gè)區(qū)域時(shí)可以用陰影表示)
②將射線組成的圖形記為圖形,拋物線與圖形的公共部分記為圖形,請(qǐng)直接寫出圖形和圖形之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,.線段與線段存在一種變換關(guān)系,即其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可以得到另一條線段,則這個(gè)旋轉(zhuǎn)中心的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣5x+5與x軸、y軸分別交于A,C兩點(diǎn),拋物線y=x2+bx+c經(jīng)過(guò)A,C兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求拋物線解析式及B點(diǎn)坐標(biāo);
(2)x2+bx+c≥﹣5x+5的解集 .
(3)若點(diǎn)M在第一象限內(nèi)拋物線上一動(dòng)點(diǎn),連接MA、MB,當(dāng)點(diǎn)M運(yùn)動(dòng)到某一位置時(shí),△ABM面積為△ABC的面積的倍,求此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com