精英家教網 > 初中數學 > 題目詳情
(2009•防城港)如圖,射線PQ是⊙O相切于點A,射線PO與⊙O相交于B,C兩點,連接AB,若PB:BC=1:2上,則∠PAB的度數等于( )

A.26°
B.30°
C.32°
D.45°
【答案】分析:根據切割線定理,切線的性質,直角三角形的性質計算.
解答:解:連接OA,則有OA⊥PA,
由于PB:BC=1:2,
∴設BC=2x,
則PB=OB=OA=x,PC=3x,
由切割線定理知,PA2=PB•PC=3x2,
∴PA=x,
tan∠P=OA:PA=1:,
∴∠P=30°,
∴∠AOB=90°-∠P=90°-30°=60°,
∴△AOB是等邊三角形,
∴∠BA0=60°,
∴∠PAB=90°-∠BAO=90°-60°=30°.
故選B.
點評:本題利用了切割線定理,切線的性質,直角三角形的性質求解.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年全國中考數學試題匯編《反比例函數》(04)(解析版) 題型:填空題

(2009•防城港)將直線y=x向左平移1個單位長度后得到直線α,如圖,直線α與反比例函數y=(x>0)的圖象相交于A,與x軸相交于B,則OA2-OB2=   

查看答案和解析>>

科目:初中數學 來源:2010年中考數學三輪復習每天30分綜合訓練(05)(解析版) 題型:填空題

(2009•防城港)將直線y=x向左平移1個單位長度后得到直線α,如圖,直線α與反比例函數y=(x>0)的圖象相交于A,與x軸相交于B,則OA2-OB2=   

查看答案和解析>>

科目:初中數學 來源:2009年廣西玉林市中考數學試卷(解析版) 題型:填空題

(2009•防城港)將直線y=x向左平移1個單位長度后得到直線α,如圖,直線α與反比例函數y=(x>0)的圖象相交于A,與x軸相交于B,則OA2-OB2=   

查看答案和解析>>

科目:初中數學 來源:2009年廣西防城港市中考數學試卷(解析版) 題型:填空題

(2009•防城港)將直線y=x向左平移1個單位長度后得到直線α,如圖,直線α與反比例函數y=(x>0)的圖象相交于A,與x軸相交于B,則OA2-OB2=   

查看答案和解析>>

科目:初中數學 來源:2009年全國中考數學試題匯編《圖形的旋轉》(04)(解析版) 題型:解答題

(2009•防城港)將一副直角三角板放置像圖1那樣,等腰直角三角板ACB的直角頂點A在直角三角板EDF的直角邊DE上,點C、D、B、F在同一直線上,點D、B是CF的三等分點,CF=6,∠F=30°.
(1)三角板ACB固定不動,將三角板EDF繞點D逆時針旋轉至EF∥CB(如圖2),試求DF旋轉的度數;點A在EF上嗎?為什么?
(2)在圖2的位置,將三角板EDF繞點D繼續(xù)逆時針旋轉15°.請問此時AC與DF有何位置關系?為什么?

查看答案和解析>>

同步練習冊答案