精英家教網 > 初中數學 > 題目詳情
20、如圖,已知點E為正方形ABCD的邊BC上一點,連接AE,過點D作DG⊥AE,垂足為G,延長DG交AB于點F.
求證:AF=BE.
分析:根據正方形的性質得到AD=AB,∠CDA=∠DAB=∠B=90°,根據垂線和三角形的內角和定理求出∠ADG+∠DAG=90°,推出∠ADG=∠EAB,根據ASA推出△ADF≌△BAE即可.
解答:證明:∵正方形ABCD,
∴AD=AB,∠CDA=∠DAB=∠B=90°,
∵DG⊥AE,
∴∠DGA=90°,
∴∠ADG+∠DAG=90°,
∵∠ADG+∠EAB=90°,
∴∠ADG=∠EAB,
∵AD=AB,∠DAF=∠B=90°,
∴△ADF≌△BAE,
∴AF=BE.
點評:本題主要考查對正方形的性質,三角形的內角和定理,垂線,全等三角形的性質和判定等知識點的理解和掌握,證出△ADF≌△BAE是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知點A從(1,0)出發(fā),以1個單位長度/秒的速度沿x軸向正方向運動,以O,精英家教網A為頂點作菱形OABC,使點B,C在第一象限內,且∠AOC=60°;以P(0,3)為圓心,PC為半徑作圓.設點A運動了t秒,求:
(1)點C的坐標(用含t的代數式表示);
(2)當點A在運動過程中,所有使⊙P與菱形OABC的邊所在直線相切的t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知點A從(1,0)出發(fā),以1個單位長度/秒的速度沿x軸向正方向運動,以O、A為頂點在x軸的上方作菱形OABC,且∠AOC=60°;同時點G從點D(8,0)出發(fā),以2個單位長度/秒的速度沿x軸向負方向運動,以D、G為頂點在x軸的上方作正方形DEFG.設點A運動了t秒.求:
(1)點B的坐標(用含t的代數式表示)
(2)當點A在運動的過程中,當t為何值時,點O、B、E在同一直線上;
(3)當點A在運動的過程中,是否存在t,使得以點C、G、D為頂點的三角形為等腰三角形?若存在精英家教網,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知點A(-3,5)在拋物線y=
12
x2+c的圖象上,點P從拋物線的頂點Q出發(fā),沿y軸以每秒1個單位的速度向正方向運動,連接AP并延長,交拋物線于點B,分別過點A、B作x軸的垂線,垂足為C、D,連接AQ、BQ.
(1)求拋物線的解析式;
(2)當A、Q、B三點構成以AQ為直角邊的直角三角形時,求點P離開點Q多少時間?
(3)試探索當AP、AC、BP、BD與一個平行四邊形的四條邊對應相等(即這四條線段能構成平行四邊形)時,點P離開點Q的時刻.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知點A(?3,5)在拋物線y=x2+c的圖象上,點P從拋物線的頂點Q出發(fā),沿y軸以每秒1個單位的速度向正方向運動,連結AP并延長,交拋物線于點B,分別過點A、B作x軸的垂線,垂足為C、D,連結AQ、BQ.
【小題1】求拋物線的解析式;
【小題2】當A、Q、B三點構成以AQ為直角邊的直角三角形時,求點P離開點Q多少時間?
【小題3】試探索當AP、AC、BP、BD與一個平行四邊形的四條邊對應相等(即這四條線段能構成平行四邊形)時,點P離開點Q的時刻.

查看答案和解析>>

科目:初中數學 來源:2011-2012學年江蘇省吳江市九年級5月教學調研測試數學試卷(解析版) 題型:解答題

如圖,已知點A(−3,5)在拋物線y=x2+c的圖象上,點P從拋物線的頂點Q出發(fā),沿y軸以

每秒1個單位的速度向正方向運動,連結AP并延長,交拋物線于點B,分別過點A、B作x軸的垂線,垂

足為C、D,連結AQ、BQ.

(1)求拋物線的解析式;

(2)當A、Q、B三點構成以AQ為直角邊的直角三角形時,求點P離開點Q多少時間?

(3)試探索當AP、AC、BP、BD與一個平行四邊形的四條邊對應相等(即這四條線段能構成平行四邊形)時,點P離開點Q的時刻.

 

查看答案和解析>>

同步練習冊答案