【題目】閱讀材料:以下是我們教科書中的一段內(nèi)容,請(qǐng)仔細(xì)閱讀,并解答有關(guān)問題.

公元前3世紀(jì),古希臘學(xué)家阿基米德發(fā)現(xiàn):若杠桿上的兩物體與支點(diǎn)的距離與其重量成反比,則杠桿平衡,后來人們把它歸納為杠桿原理,通俗地說,杠桿原理為:

阻力×阻力臂=動(dòng)力×動(dòng)力臂

【問題解決】

若工人師傅欲用撬棍動(dòng)一塊大石頭,已知阻力和阻力臂不變,分別為1500N和0.4m.

(1)動(dòng)力F(N)與動(dòng)力臂l(m)有怎樣的函數(shù)關(guān)系?當(dāng)動(dòng)力臂為1.5m時(shí),撬動(dòng)石頭需要多大的力?

(2)若想使動(dòng)力F(N)不超過題(1)中所用力的一半,則動(dòng)力臂至少要加長(zhǎng)多少?

【數(shù)學(xué)思考】

(3)請(qǐng)用數(shù)學(xué)知識(shí)解釋:我們使用棍,當(dāng)阻力與阻力臂一定時(shí),為什么動(dòng)力臂越長(zhǎng)越省力.

【答案】(1)、400N;(2)、1.5米;(3)、理由見解析.

【解析】

試題分析:(1)、根據(jù)杠桿定律求得函數(shù)的解析式后代入l=1.5求得力的大小即可;(2)、將求得的函數(shù)解析式變形后求得動(dòng)力臂的大小,然后即可求得增加的長(zhǎng)度;(3)、利用反比例函數(shù)的知識(shí)結(jié)合杠桿定律進(jìn)行說明即可.

試題解析:(1)、根據(jù)杠桿定律有FL=1500×0.4, 函數(shù)的解析式為F=,

當(dāng)L=1.5時(shí),F(xiàn)==400, 因此,撬動(dòng)石頭需要400N的力;

(2)、由(1)知FL=600, 函數(shù)解析式可以表示為:L=, 當(dāng)F=400×=200時(shí),L=3,

31.5=1.5(m), 因此若用力不超過400N的一半,則動(dòng)力臂至少要加長(zhǎng)1.5米;

(3)、因?yàn)榍斯鞴ぷ髟碜裱?/span>杠桿定律,當(dāng)阻力與阻力臂一定時(shí),其乘積為常數(shù),設(shè)其為k,則動(dòng)力F與動(dòng)力臂L的函數(shù)關(guān)系式為F=,根據(jù)反比例函數(shù)的性質(zhì)可知,動(dòng)力F隨動(dòng)力臂l的增大而減小,所以動(dòng)力臂越長(zhǎng)越省力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程2(5x-1)2=3(5x-1)的最適當(dāng)?shù)姆椒ㄊ恰。ā  。?/span>

A.直接開平方法.  B.配方法   C.公式法  D.分解因式法

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)等腰三角形的兩邊長(zhǎng)分別是2cm、5cm,則它的周長(zhǎng)為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列軸對(duì)稱圖形中,對(duì)稱軸條數(shù)最少的是(
A.等邊三角形
B.正方形
C.正六邊形
D.圓

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在-3,0,1, 2這四個(gè)有理數(shù)中,是負(fù)數(shù)的是( )

A. 3 B. 0 C. 1 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面方格中有一個(gè)菱形ABCD和點(diǎn)O,請(qǐng)你在方格中畫出以下圖形(只要求畫出平移、旋轉(zhuǎn)后的圖形,不要求寫出作圖步驟和過程).

(1)畫出菱形ABCD向右平移6格后的四邊形A1B1C1D1;

(2)畫出菱形ABCD以點(diǎn)O為旋轉(zhuǎn)中心,沿逆時(shí)針方向旋轉(zhuǎn)90°后的四邊形A2B2C2D2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校舉行百科知識(shí)搶答賽,共有20道題,規(guī)定每答對(duì)一題記10分,答錯(cuò)或放棄記﹣4分,八年級(jí)一班代表的得分目標(biāo)為不低于88分,則這個(gè)隊(duì)至少要答對(duì)道題才能達(dá)到目標(biāo)要求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AD平分∠BAC,BD⊥AD于D,過D作DE∥AC交AB于點(diǎn)E.

(1)求證:E是AB的中點(diǎn);

(2)若AB=6,求線段DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)械廠一月份生產(chǎn)零件50萬個(gè),三月份生產(chǎn)零件72萬個(gè),則該機(jī)械廠二、三月份生產(chǎn)零件數(shù)量的月平均增長(zhǎng)率為

A2% B5% C10% D20%

查看答案和解析>>

同步練習(xí)冊(cè)答案