(2012•莆田)點(diǎn)A、B均在由面積為1的相同小矩形組成的網(wǎng)格的格點(diǎn)上,建立平面直角坐標(biāo)系如圖所示.若P是x軸上使得|PA-PB|的值最大的點(diǎn),Q是y軸上使得QA+QB的值最小的點(diǎn),則OP•OQ=
5
5
分析:連接AB并延長(zhǎng)交x軸于點(diǎn)P,作A點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)A′連接A′B交y軸于點(diǎn)Q,求出點(diǎn)Q與y軸的交點(diǎn)坐標(biāo)即可得出結(jié)論.
解答:解:連接AB并延長(zhǎng)交x軸于點(diǎn)P,由三角形的三邊關(guān)系可知,點(diǎn)P即為x軸上使得|PA-PB|的值最大的點(diǎn),
∵點(diǎn)B是正方形的中點(diǎn),
∴點(diǎn)P即為AB延長(zhǎng)線上的點(diǎn),此時(shí)P(3,0)即OP=3;
作A點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)A′連接A′B交y軸于點(diǎn)Q,則A′B即為QA+QB的最小值,
∵A′(-1,2),B(2,1),
設(shè)過(guò)A′B的直線為:y=kx+b,則
2=-k+b
1=2k+b
,
解得
k=-
1
3
b=
5
3

∴Q(0,
5
3
),即OQ=
5
3

∴OP•OQ=3×
5
3
=5.
故答案為:5.
點(diǎn)評(píng):本題考查的是軸對(duì)稱-最短路線問題,根據(jù)題意得出P、Q兩點(diǎn)的坐標(biāo)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•莆田)如圖,某種新型導(dǎo)彈從地面發(fā)射點(diǎn)L處發(fā)射,在初始豎直加速飛行階段,導(dǎo)彈上升的高度y(km)與飛行時(shí)間x(s)之間的關(guān)系式為y=
1
18
x2+
1
6
x
 (0≤x≤10).發(fā)射3s后,導(dǎo)彈到達(dá)A點(diǎn),此時(shí)位于與L同一水平面的R處雷達(dá)站測(cè)得AR的距離是2km,再過(guò)3s后,導(dǎo)彈到達(dá)B點(diǎn).
(1)求發(fā)射點(diǎn)L與雷達(dá)站R之間的距離;
(2)當(dāng)導(dǎo)彈到達(dá)B點(diǎn)時(shí),求雷達(dá)站測(cè)得的仰角(即∠BRL)的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•莆田)如圖,一次函數(shù)y=k1x+b的圖象過(guò)點(diǎn)A(0,3),且與反比例函數(shù)y=
k2x
(x>O)的圖象相交于B、C兩點(diǎn).
(1)若B(1,2),求k1•k2的值;
(2)若AB=BC,則k1•k2的值是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•莆田)如圖,在平面直角坐標(biāo)系中,矩形OABC四個(gè)頂點(diǎn)的坐標(biāo)分別為O(0,0),A(0,3),B(6,3),C(6,0),拋物線y=ax2+bx+c(a≠0)過(guò)點(diǎn)A.

(1)求c的值;
(2)若a=-1,且拋物線與矩形有且只有三個(gè)交點(diǎn)A、D、E,求△ADE的面積S的最大值;
(3)若拋物線與矩形有且只有三個(gè)交點(diǎn)A、M、N,線段MN的垂直平分線l過(guò)點(diǎn)0,交線段BC于點(diǎn)F.當(dāng)BF=1時(shí),求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•莆田質(zhì)檢)如圖,在等邊△ABC中,點(diǎn)D、E分別在BC、AC邊上,且∠ADE=60°,AB=3,BD=1,則EC=
2
3
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案