【題目】某校舉辦了一次成語(yǔ)知識(shí)競(jìng)賽,滿分分,學(xué)生得分均為整數(shù),成績(jī)達(dá)到分及分以上為合格,達(dá)到分或分為優(yōu)秀.這次競(jìng)賽中甲、乙兩組學(xué)生成績(jī)統(tǒng)計(jì)分析表和成績(jī)分布的折線統(tǒng)計(jì)圖如圖所示

組別

平均分

中位數(shù)

方差

合格率

優(yōu)秀率

甲組

乙組

1)求出成績(jī)統(tǒng)計(jì)分析表中,的值;

2)小英同學(xué)說:這次競(jìng)賽我得了分,在我們小組中排名屬中游略上!觀察上面表格判斷,小英是甲、乙哪個(gè)組的學(xué)生;

3)甲組同學(xué)說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績(jī)好于乙組,但乙組同學(xué)不同意甲組同學(xué)的說法,認(rèn)為他們的成績(jī)要好于甲組.請(qǐng)你給出兩條支持乙組同學(xué)觀點(diǎn)的理由.

【答案】167.2;(2)甲組;(3)理由見詳解.

【解析】

中位數(shù)是按順序排列的一組數(shù)據(jù)中居于中間位置的數(shù),偶數(shù)個(gè)數(shù)量的中位數(shù)=中間兩個(gè)數(shù)之和,平均分=所有人分?jǐn)?shù)之和總?cè)藬?shù),.

1)甲組:總?cè)藬?shù)10人,第5人分?jǐn)?shù)=6分,第6人分?jǐn)?shù)=6分,中位數(shù)

乙組:平均分

2)小英是甲組的.理由是:乙組的平均分=7.2分,高于小英的7分,如果在乙組的話小英應(yīng)該是排名屬中游略下。

3)第一條理由:乙組的平均分=7.2分高于甲組的平均分=6.8分,乙組整體成績(jī)高于甲組;第二條理由:乙組的中位數(shù)高于甲組,說明乙組處于中游的成績(jī)多于甲組.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】材料一:如圖1,由課本91頁(yè)例2畫函數(shù)y=﹣6xy=﹣6x+5可知,直線y=﹣6x+5可以由直線y=﹣6x向上平移5個(gè)單位長(zhǎng)度得到由此我們得到正確的結(jié)論一:在直線L1y=K1x+b1與直線L2y=K2x+b2中,如果K1=K2 b1≠b2 ,那么L1L2,反過來,也成立.

材料二:如圖2,由課本92頁(yè)例3畫函數(shù)y2x1y=﹣0.5x+1可知,利用所學(xué)知識(shí)一定能證出這兩條直線是互相垂直的.由此我們得到正確的結(jié)論二:在直線L1y=k1x+b1 L2y=k2x+b2 中,如果k1·k2=-1那么L1L2,反過來,也成立

應(yīng)用舉例

已知直線y=﹣x+5與直線ykx+2互相垂直,則﹣k=﹣1.所以k6

解決問題

(1)請(qǐng)寫出一條直線解析式______,使它與直線yx3平行.

(2)如圖3,點(diǎn)A坐標(biāo)為(1,0),點(diǎn)P是直線y=﹣3x+2上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到何位置時(shí),線段PA的長(zhǎng)度最?并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有公路l1同側(cè)、l2異側(cè)的兩個(gè)城鎮(zhèn)A,B,如下圖.電信部門要修建一座信號(hào)發(fā)射塔,按照設(shè)計(jì)要求,發(fā)射塔到兩個(gè)城鎮(zhèn)AB的距離必須相等,到兩條公路l1l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請(qǐng)用尺規(guī)作圖找出所有符合條件的點(diǎn),注明點(diǎn)C的位置.(保留作圖痕跡,不要求寫出畫法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,小明利用同弧所對(duì)的圓周角及圓心角的性質(zhì)探索了一些問題,下面請(qǐng)你和小明一起進(jìn)入探索之旅.

(1)如圖1,ABC中,∠A=30°,BC=2,則ABC的外接圓的半徑為

(2)如圖2,在矩形ABCD中,請(qǐng)利用以上操作所獲得的經(jīng)驗(yàn),在矩形ABCD內(nèi)部用直尺與圓規(guī)作出一點(diǎn)P,點(diǎn)P滿足;∠BPC=BEC,且PB=PC;(要求:用直尺與圓規(guī)作出點(diǎn)P,保留作圖痕跡.)

(3)如圖3,在平面直角坐標(biāo)系的第一象限內(nèi)有一點(diǎn)B,坐標(biāo)為(2,m),過點(diǎn)BABy軸,BCx軸,垂足分別為A、C,若點(diǎn)P在線段AB上滑動(dòng)(點(diǎn)P可以與點(diǎn)A、B重合),發(fā)現(xiàn)使得∠OPC=45°的位置有兩個(gè),則m的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),反比例函數(shù)y=的圖象經(jīng)過點(diǎn)(1,4),菱形OABC的頂點(diǎn)A在函數(shù)的圖象上,對(duì)角線OBx軸上.

(1)求反比例函數(shù)的關(guān)系式;

(2)直接寫出菱形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖顯示了用計(jì)算機(jī)模擬隨機(jī)拋擲一枚硬幣的某次實(shí)驗(yàn)的結(jié)果

下面有三個(gè)推斷:

①當(dāng)拋擲次數(shù)是100時(shí),計(jì)算機(jī)記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;

②隨著試驗(yàn)次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“正面向上”的概率是0.5

③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)拋擲次數(shù)為150時(shí),“正面向上”的頻率一定是0.45

其中合理的是

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)x,y定義一種新運(yùn)算T,規(guī)定T(x,y)=(其中a,b是非零常數(shù),且x+y≠0),這里等式右邊是通常的四則運(yùn)算.

如:T(3,1)=,T(m,﹣2)=

(1)填空:T(4,﹣1)=   (用含a,b的代數(shù)式表示);

(2)T(﹣2,0)=﹣2T(5,﹣1)=6.

①求ab的值;

②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電動(dòng)自行車已成為市民日常出行的首選工具。據(jù)某市品牌電動(dòng)自行車經(jīng)銷商1至3月份統(tǒng)計(jì),該品牌電動(dòng)自行車1月份銷售150輛,3月銷售216輛.

(1)求該品牌電動(dòng)車銷售量的月平均增長(zhǎng)率;

(2)若該品牌電動(dòng)自行車的進(jìn)價(jià)為2300元,售價(jià)2800元,則該經(jīng)銷商1月至3月共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線與雙曲線交于點(diǎn),點(diǎn).

1)求反比例函數(shù)的表達(dá)式;

2)根據(jù)圖象直接寫出不等式的解集 .

3)將直線沿軸向下平移后,分別與軸,軸交于點(diǎn),點(diǎn),當(dāng)四邊形為平行四邊形時(shí),求直線的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案