分析 (1)由翻折的性質(zhì)可知B′C=BC=10,然后由勾股定理可求得OB′的長,從而得到點B′的坐標;
(2)由OB′=6可知B′A=4,由翻折的性質(zhì)可知BE=B′E,然后再Rt△EB′A中由勾股定理可求得AE=3,從而得到點E的坐標,最后利用待定系數(shù)法求得直線CE的解析式即可.
解答 解:(1)由翻折的性質(zhì)可知B′C=BC=10.
在Rt△OCB′中,由勾股定理得:OB′=$\sqrt{CB{′}^{2}-O{C}^{2}}$=$\sqrt{1{0}^{2}-{8}^{2}}$=6.
∴點B′的坐標為(6,0).
(2)∵OA=10,OB′=6,
∴B′A=4.
由翻折的性質(zhì)可知B′E=BE.
設B′E=BE=x,則AE=8-x.
在Rt△B′AE中,由勾股定理AE2+B′A2=B′E2,即(8-x)2+42=x2
解得:x=5cm.
∴AE=8-5=3.
∴點E的坐標為(10,3).
設CE的解析式為y=kx+b.
將點C和點E的坐標代入得:$\left\{\begin{array}{l}{b=8}\\{10k+b=3}\end{array}\right.$.
解得:k=-$\frac{1}{2}$,b=8.
∴直線CE的解析式為y=-$\frac{1}{2}x+8$.
點評 本題主要考查了翻折變換、勾股定理的應用、待定系數(shù)法求一次函數(shù)的解析式,求得點E的坐標是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1cm | B. | 3cm | C. | 2cm或6cm | D. | 1cm或3cm |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com