(2006•臨安市)請閱讀下列解題過程:已知a、b、c為△ABC的三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:
∵a2c2-b2c2=a4-b4,A
∴c2(a2-b2)=(a2+b2)(a2-b2),B
∴c2=a2+b2,C
∴△ABC為直角三角形.D
問:
(1)在上述解題過程中,從哪一步開始出現(xiàn)錯誤:______;
(2)錯誤的原因是:______;
(3)本題正確的結論是:______.
【答案】分析:通過給出的條件化簡變形,找出三角形三邊的關系,然后再判斷三角形的形狀.
解答:解:(1)C;
(2)方程兩邊同除以(a2-b2),因為(a2-b2)的值有可能是0;
(3)∵c2(a2-b2)=(a2+b2)(a2-b2
∴c2=a2+b2或a2-b2=0
∵a2-b2=0
∴a+b=0或a-b=0
∵a+b≠0
∴c2=a2+b2或a-b=0
∴c2=a2+b2或a=b
∴該三角形是直角三角形或等腰三角形.
點評:本題考查了因式分解和公式變形等內容,變形的目的就是找出三角形三邊的關系再判定三角形的形狀.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2006•臨安市)如圖,△OAB是邊長為2+的等邊三角形,其中O是坐標原點,頂點B在y軸正方向上,將△OAB折疊,使點A落在邊OB上,記為A′,折痕為EF.
(1)當A′E∥x軸時,求點A′和E的坐標;
(2)當A′E∥x軸,且拋物線y=-x2+bx+c經過點A′和E時,求拋物線與x軸的交點的坐標;
(3)當點A′在OB上運動,但不與點O、B重合時,能否使△A′EF成為直角三角形?若能,請求出此時點A′的坐標;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•臨安市)如圖,△OAB是邊長為2+的等邊三角形,其中O是坐標原點,頂點B在y軸正方向上,將△OAB折疊,使點A落在邊OB上,記為A′,折痕為EF.
(1)當A′E∥x軸時,求點A′和E的坐標;
(2)當A′E∥x軸,且拋物線y=-x2+bx+c經過點A′和E時,求拋物線與x軸的交點的坐標;
(3)當點A′在OB上運動,但不與點O、B重合時,能否使△A′EF成為直角三角形?若能,請求出此時點A′的坐標;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年浙江省臨安市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•臨安市)如圖,△OAB是邊長為2+的等邊三角形,其中O是坐標原點,頂點B在y軸正方向上,將△OAB折疊,使點A落在邊OB上,記為A′,折痕為EF.
(1)當A′E∥x軸時,求點A′和E的坐標;
(2)當A′E∥x軸,且拋物線y=-x2+bx+c經過點A′和E時,求拋物線與x軸的交點的坐標;
(3)當點A′在OB上運動,但不與點O、B重合時,能否使△A′EF成為直角三角形?若能,請求出此時點A′的坐標;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年四川省成都市郫縣中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•臨安市)如圖,△OAB是邊長為2+的等邊三角形,其中O是坐標原點,頂點B在y軸正方向上,將△OAB折疊,使點A落在邊OB上,記為A′,折痕為EF.
(1)當A′E∥x軸時,求點A′和E的坐標;
(2)當A′E∥x軸,且拋物線y=-x2+bx+c經過點A′和E時,求拋物線與x軸的交點的坐標;
(3)當點A′在OB上運動,但不與點O、B重合時,能否使△A′EF成為直角三角形?若能,請求出此時點A′的坐標;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年山東省濟寧市嘉祥縣梁寶寺鎮(zhèn)第一中學九年級(下)第一次月考數(shù)學試卷(解析版) 題型:選擇題

(2006•臨安市)從正面觀察下圖的兩個物體,看到的是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案