(2010•密云縣)已知一次函數(shù)y=kx-3的圖象經(jīng)過(guò)點(diǎn)M(-2,1),求此圖象與x、y軸的交點(diǎn)坐標(biāo).
【答案】分析:把點(diǎn)M的坐標(biāo)代入一次函數(shù)即可求得k的值,然后讓橫坐標(biāo)等于0得到圖象與y軸的交點(diǎn);讓縱坐標(biāo)等于0得到圖象與y軸的交點(diǎn).
解答:解:∵一次函數(shù)y=kx-3的圖象經(jīng)過(guò)點(diǎn)M(-2,1),
∴-2k-3=1.
解得:k=-2.
∴此一次函數(shù)的解析式為y=-2x-3.
令y=0,可得x=-
∴一次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo)為(-,0).
令x=0,可得y=-3.
∴一次函數(shù)的圖象與y軸的交點(diǎn)坐標(biāo)為(0,-3).
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是:在這條直線上的各點(diǎn)的坐標(biāo)一定適合這條直線的解析式;x軸上的點(diǎn)縱坐標(biāo)為0;y軸上的點(diǎn)橫坐標(biāo)為0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•密云縣)如圖,將腰長(zhǎng)為的等腰Rt△ABC(∠C是直角)放在平面直角坐標(biāo)系中的第二象限,其中點(diǎn)A在y軸上,點(diǎn)B在拋物線y=ax2+ax-2上,點(diǎn)C的坐標(biāo)為(-1,0).
(1)點(diǎn)A的坐標(biāo)為_(kāi)_____,點(diǎn)B的坐標(biāo)為_(kāi)_____;
(2)拋物線的關(guān)系式為_(kāi)_____,其頂點(diǎn)坐標(biāo)為_(kāi)_____;
(3)將三角板ABC繞頂點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°,到達(dá)△AB′C′的位置.請(qǐng)判斷點(diǎn)B′、C′是否在(2)中的拋物線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年北京市密云縣中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•密云縣)如圖,將腰長(zhǎng)為的等腰Rt△ABC(∠C是直角)放在平面直角坐標(biāo)系中的第二象限,其中點(diǎn)A在y軸上,點(diǎn)B在拋物線y=ax2+ax-2上,點(diǎn)C的坐標(biāo)為(-1,0).
(1)點(diǎn)A的坐標(biāo)為_(kāi)_____,點(diǎn)B的坐標(biāo)為_(kāi)_____;
(2)拋物線的關(guān)系式為_(kāi)_____,其頂點(diǎn)坐標(biāo)為_(kāi)_____;
(3)將三角板ABC繞頂點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°,到達(dá)△AB′C′的位置.請(qǐng)判斷點(diǎn)B′、C′是否在(2)中的拋物線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年北京市密云縣中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•密云縣)已知一次函數(shù)y=kx-3的圖象經(jīng)過(guò)點(diǎn)M(-2,1),求此圖象與x、y軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年北京市密云縣中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•密云縣二模)已知拋物線y=x2-4x+1,將此拋物線沿x軸方向向左平移4個(gè)單位長(zhǎng)度,得到一條新的拋物線.
(1)求平移后的拋物線解析式;
(2)由拋物線對(duì)稱軸知識(shí)我們已經(jīng)知道:直線x=m,即為過(guò)點(diǎn)(m,0)平行于y軸的直線,類似地,直線y=m,即為過(guò)點(diǎn)(0,m)平行于x軸的直線、請(qǐng)結(jié)合圖象回答:當(dāng)直線y=m與這兩條拋物線有且只有四個(gè)交點(diǎn),實(shí)數(shù)m的取值范圍;
(3)若將已知的拋物線解析式改為y=x2+bx+c(b<0),并將此拋物線沿x軸向左平移-b個(gè)單位長(zhǎng)度,試回答(2)中的問(wèn)題.

查看答案和解析>>

同步練習(xí)冊(cè)答案