【題目】如圖,P為平行四邊形ABCD邊AD上一點,E、F分別是PB、PC(靠近點P)的三等分點,△PEF、△PDC、△PAB的面積分別為S1、S2、S3 , 若AD=2,AB=2 ,∠A=60°,則S1+S2+S3的值為( )
A.
B.
C.
D.4
【答案】A
【解析】解:作DH⊥AB于點H,如右圖所示,
∵AD=2,AB=2 ,∠A=60°,
∴DH=ADsin60°=2× = ,
∴SABCD=ABDH=2 =6,
∴S2+S3=S△PBC=3,
又∵E、F分別是PB、PC(靠近點P)的三等分點,
∴ ,
∴S△PEF= ×3= ,
即S1= ,
∴S1+S2+S3= +3= ,
故選A.
【考點精析】利用平行四邊形的性質(zhì)和相似三角形的判定與性質(zhì)對題目進行判斷即可得到答案,需要熟知平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC與△DEF分別是等邊三角形和等腰直角三角形,AC與DF交于點G,AD與FC分別是△ABC和△DEF的高,線段BC,DE在同一條直線上,則下列說法不正確的是( )
A.△AGD∽△CGF
B.△AGD∽△DGC
C. =3
D. =
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,把橫縱坐標都是整數(shù)的點稱為“整點”.
(1)直接寫出函數(shù)y= 圖象上的所有“整點”A1 , A2 , A3 , …的坐標;
(2)在(1)的所有整點中任取兩點,用樹狀圖或列表法求出這兩點關于原點對稱的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對角線BD上兩點,且∠EAF=45°,將△ADF繞點A順時針旋轉(zhuǎn)90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】濟南大明湖畔的“超然樓”被稱作“江北第一樓”,某校數(shù)學社團的同學對超然樓的高度進行了測量,如圖,他們在A處仰望塔頂,測得仰角為30°,再往樓的方向前進60m至B處,測得仰角為60°,若學生的身高忽略不計, ≈1.7,結(jié)果精確到1m,則該樓的高度CD為( )
A.47m
B.51m
C.53m
D.54m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有甲、乙兩個不透明的布袋,甲袋中有2個完全相同的小球,分別標有數(shù)字0個﹣2,;乙袋中有3個完全相同的小球,分別標有數(shù)字﹣2,0和1,小明從甲袋中隨機取出1個小球,記錄標有的數(shù)字為x,再從乙袋中隨機取出1個小球,記錄標有的數(shù)字為y,這樣確定了點Q的坐標(x,y)
(1)寫出先Q所有可能的坐標;
(2)求點Q在x軸上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com