【題目】某公司需招聘一名員工,對應聘者甲、乙、丙從筆試、面試、體能三個方面進行量化考核.甲、乙、丙各項得分如下表:

85

80

75

80

90

73

83

79

90

(1)根據(jù)三項得分的平均分,從高到低確定三名應聘者的排名順序.

(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計入總分(不計其他因素條件),請你說明誰將被錄用.

【答案】(1)丙,乙,甲;(2)甲被錄用.

【解析】

1)代入求平均數(shù)公式即可求出三人的平均成績,比較得出結(jié)果;

2)先算出甲、乙、丙的總分,根據(jù)公司的規(guī)定先排除丙,再根據(jù)甲的總分最高,即可得出甲被錄用.

1=85+80+75)÷3=80(分),=80+90+73)÷3=81(分),=83+79+90)÷3=84(分),則從高到低確定三名應聘者的排名順序為:丙,乙,甲;

2)甲的總分是85×60%+80×30%+75×10%=82.5(分),乙的總分是80×60%+90×30%+73×10%=82.3(分),丙的總分是83×60%+79×30%+90×10%=82.5(分).

∵公司規(guī)定筆試面試、體能得分分別不得低于80,80,70,∴丙排除∴甲的總分最高,甲被錄用.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某班體育委員統(tǒng)計了全班45名同學一周的體育鍛煉時間(單位:小時),并繪制了如圖所示的折線統(tǒng)計圖,下列說法中錯誤的是(

A. 鍛煉時間是9小時的人數(shù)最多 B. 鍛煉時間是10小時的有10

C. 鍛煉時間是11小時的有4 D. 鍛煉時間不低于9小時的有14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2的圖象與一次函數(shù)y=x+b的圖象相交于A(﹣2,2)、B兩點,從點A和點B分別引平行于y軸的直線與x軸分別交于C,D兩點,點P(t,0),為線段CD上的動點,過點P且平行于y軸的直線與拋物線和直線分別交于R,S.

(1)求一次函數(shù)和二次函數(shù)的解析式,并求出點B的坐標;
(2)當SR=2RP時,計算線段SR的長;
(3)若線段BD上有一動點Q且其縱坐標為t+3,問是否存在t的值,使SBRQ=15?若存在,求t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=6MN分別是AB、CD邊的中點,PAD上的點,且∠PNB=3∠CBN

1)求證:∠PNM=2∠CBN;

2)求線段AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組 并寫出它的所有非負整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD繞點A按逆時針方向旋轉(zhuǎn),得到矩形AEFG,E點正好落在邊CD上,連接BE,BG,且BGAEP.

1)求證:CBE=BAE;

(2)求證:PG=PB;

3)若AB=,BC=3,求出BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填空或填寫理由.

(1)如圖甲,∵∠   =   (已知);

ABCD(   

(2)如圖乙,已知直線ab,3=80°,求∠1,2的度數(shù).

解:∵ab,(   

∴∠1=4(   

又∵∠3=4(   

3=80°(已知)

∴∠1=(   )(等量代換)

又∵∠2+3=180°

∴∠2=(   )(等式的性質(zhì))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A從點(1,0)出發(fā),以1個單位長度/秒的速度沿x軸向正方向運動,以O、A為頂點作菱形OABC,使點BC在第一象限內(nèi),且∠AOC=60°,點P的坐標為(0,3),設點A運動了t秒,求:

1)點C的坐標(用含t的代數(shù)式表示);

2)點A在運動過程中,當t為何值時,使得△OCP為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的是( )

A. 若∠C=AB,則ABC為直角三角形

B. abc=222,則ABC為直角三角形

C. a=c,b=c,則ABC為直角三角形

D. 若∠A∶∠B∶∠C=345,則ABC為直角三角形

查看答案和解析>>

同步練習冊答案