【題目】隨著私家車擁有量的增加,停車問題已經給人們的生活帶來了很多不便.為了緩解停車矛盾,某小區(qū)開發(fā)商欲投資16萬元,建造若干個停車位,考慮到實際因素,計劃露天車位的數(shù)量不少于室內車位的2倍,但不超過室內車位的3倍.據(jù)測算,建造費用及年租金如下表:

類別

室內車位

露天車位

建造費用(元/個)

5 000

1 000

年租金(元/個)

2 000

800

(1)該開發(fā)商有哪幾種符合題意的建造方案?寫出解答過程.
(2)若按表中的價格將兩種車位全部出租,哪種方案獲得的年租金最多?并求出此種方案的年租金.(不考慮其他費用)

【答案】解:(1)設建造室內停車位為x個,則建造露天停車位為個.
根據(jù)題意,得
解得20≤x≤
∵x為整數(shù),
∴x取20,21,22.
取60,55,50.
∴共有三種建造方案.
方案一:室內停車位20個,露天停車位60個;
方案二:室內停車位21個,露天停車位55個;
方案三:室內停車位22個,露天停車位50個.
(2)設年租金為w元.
根據(jù)題意,得
w=2 000x+800
=﹣2 000x+128 000.
∵k=﹣2 000<0,
∴w隨x的增大而減。
∴當x=20時,
w最大=﹣2 000×20+128 000
=88 000(元).
答:當建造室內停車位20個,露天停車位60個時租金最多,最多年租金為88 000元.
【解析】(1)首先設建造室內停車位為x個,則建造露天停車位為:(160000﹣5000x)÷1000個,根據(jù)題目中的中的關鍵語句:①露天車位的數(shù)量不少于室內車位的2倍,但不超過室內車位的3倍列出不等式組,然后解出解集后取整數(shù)解即可;
(2)設年租金為w元,根據(jù)題意可得:室內車位的數(shù)量×2000+露天車位的數(shù)量×800,可得到w與x的關系表達式,再根據(jù)一次函數(shù)的增減性確定x的值,求出年租金.
【考點精析】利用一元一次不等式組的應用對題目進行判斷即可得到答案,需要熟知1、審:分析題意,找出不等關系;2、設:設未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=1,下列結論: ①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.
其中正確的是(

A.①④
B.②④
C.①②③
D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解中考體育科目訓練情況,某縣從全縣九年級學生中隨機抽取了部分學生進行了一次中考體育科目測試(把測試結果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽樣測試的學生人數(shù)是;
(2)圖1中∠α的度數(shù)是 , 并把圖2條形統(tǒng)計圖補充完整
(3)該縣九年級有學生3500名,如果全部參加這次中考體育科目測試,請估計不及格的人數(shù)為
(4)測試老師想從4位同學(分別記為E、F、G、H,其中E為小明)中隨機選擇兩位同學了解平時訓練情況,請用列表或畫樹形圖的方法求出選中小明的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,直線l與⊙O相切于點C,AD⊥l,垂足為D,AD交⊙O于點E,連接OC、BE.若AE=6,OA=5,則線段DC的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,拋物線y=ax2+2xa+c經過A(﹣4,0),B(0,4)兩點,與x軸交于另一點C,直線y=x+5與x軸交于點D,與y軸交于點E.

(1)求拋物線的解析式;
(2)點P是第二象限拋物線上的一個動點,連接EP,過點E作EP的垂線l,在l上截取線段EF,使EF=EP,且點F在第一象限,過點F作FM⊥x軸于點M,設點P的橫坐標為t,線段FM的長度為d,求d與t之間的函數(shù)關系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,過點E作EH⊥ED交MF的延長線于點H,連接DH,點G為DH的中點,當直線PG經過AC的中點Q時,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】荔枝是深圳的特色水果,小明的媽媽先購買了2千克桂味和3千克糯米糍,共花費90元;后又購買了1千克桂味和2千克糯米糍,共花費55元.(每次兩種荔枝的售價都不變)
(1)求桂味和糯米糍的售價分別是每千克多少元;
(2)如果還需購買兩種荔枝共12千克,要求糯米糍的數(shù)量不少于桂味數(shù)量的2倍,請設計一種購買方案,使所需總費用最低.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著信息技術的快速發(fā)展,“互聯(lián)網+”滲透到我們日常生活的各個領域,網上在線學習交流已不再是夢,現(xiàn)有某教學網站策劃了A,B兩種上網學習的月收費方式:

收費方式

月使用費/元

包時上網時間/h

超時費/(元/min)

A

7

25

0.01

B

m

n

0.01

設每月上網學習時間為x小時,方案A,B的收費金額分別為yA , yB
(1)如圖是yB與x之間函數(shù)關系的圖象,請根據(jù)圖象填空:m= n=

(2)寫出x之間的函數(shù)關系式.
(3)選擇哪種方式上網學習合算,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙二人在環(huán)形跑道上同時同地出發(fā),同向運動.若甲的速度是乙的速度的2倍,則甲運動2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,則甲運動 周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,則甲運動 周,甲、乙第一次相遇,…,以此探究正常走時的時鐘,時針和分針從0點(12點)同時出發(fā),分針旋轉周,時針和分針第一次相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+mx軸、y軸分別交于A、B兩點,與正比例函數(shù)y=kx交于點C(1,).

(1)求k、m的值;

(2)求△OAC的面積.

查看答案和解析>>

同步練習冊答案