【題目】如圖,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊△ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過程中,
(1)求證:△ABQ ≌ △CAP;
(2)∠CMQ的大小變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);
(3)連接PQ,當(dāng)點(diǎn)P、Q運(yùn)動(dòng)多少秒時(shí),△APQ是等腰三角形?
【答案】(1)證明見解析;(2)∠CMQ的大小不變且為60度;(3)t=2.
【解析】
(1)根據(jù)等邊三角形的性質(zhì)、三角形全等的判定定理證明;
(2)根據(jù)全等三角形的性質(zhì)得到∠BAQ=∠ACP,根據(jù)三角形的外角的性質(zhì)解答;
(3)分三種情況分別討論即可求解.
(1)根據(jù)路程=速度×時(shí)間可得:AP=BQ
∵△ABC是等邊三角形
∴∠PAC=∠B=60°,AB=AC
∴△ABQ≌△CAP(SAS)
(2)∵ △ABQ≌△CAP
∴∠BAQ=∠ACP
∴∠CMQ=∠ACM+∠MAC=∠BAQ+∠MAC=60°
因此,∠CMQ的大小不變且為60度
(3)當(dāng)AP=AQ時(shí),僅當(dāng)P運(yùn)動(dòng)到B點(diǎn),Q運(yùn)動(dòng)到C點(diǎn)成立,故不符合題意;
當(dāng)PQ=AQ時(shí),僅當(dāng)P運(yùn)動(dòng)到B點(diǎn),Q運(yùn)動(dòng)到C點(diǎn)成立,故不符合題意;
當(dāng)AP=PQ時(shí),如圖,當(dāng)AQ⊥BC時(shí),AP=BP=PQ,故t=2÷1=2時(shí),△APQ為等腰三角形;
綜上,當(dāng)t=2時(shí),△APQ為等腰三角形,此時(shí)AP=PQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮玩一個(gè)游戲:三張大小、質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字,,,現(xiàn)將標(biāo)有數(shù)字的一面朝下.小明和小亮各從中任意抽取一張.計(jì)算小明和小亮抽得的兩個(gè)數(shù)字之和,如果和為奇數(shù)則小明勝,和為偶數(shù)則小亮勝.
求小亮抽到標(biāo)有數(shù)字卡片取勝的概率;
請(qǐng)判斷該游戲?qū)﹄p方是否公平?請(qǐng)用列表法或樹狀圖等方法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市委市政府提出的建設(shè)“綠色襄陽(yáng)”的號(hào)召,我市某單位準(zhǔn)備將院內(nèi)一塊長(zhǎng)30m,寬20m的長(zhǎng)方形空地,建成一個(gè)矩形花園.要求在花園中修兩條縱向平行和一條橫向彎折的小道,剩余的地方種植花草,如圖所示,要使種植花草的面積為532m2,那么小道進(jìn)出口的寬度應(yīng)為多少米?(注:所有小道進(jìn)出口的寬度相等,且每段小道均為平行四邊形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用一段長(zhǎng)為40m的籬笆圍成一個(gè)一邊靠墻的矩形花圃ABCD,墻長(zhǎng)28m.設(shè)AB長(zhǎng)為xm,矩形的面積為ym2.
(1)寫出y與x的函數(shù)關(guān)系式;
(2)當(dāng)AB長(zhǎng)為多少米時(shí),所圍成的花圃面積最大?最大值是多少?
(3)當(dāng)花圃的面積為150m2時(shí),AB長(zhǎng)為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x+2向下平移1個(gè)單位后,得到直線l2,l2交x軸于點(diǎn)A,點(diǎn)P是直線l1上一動(dòng)點(diǎn),過點(diǎn)P作PQ∥y軸交l2于點(diǎn)Q
(1)求出點(diǎn)A的坐標(biāo);
(2)連接AP,當(dāng)△APQ為以PQ為底邊的等腰三角形時(shí),求點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)點(diǎn)B為OA的中點(diǎn),連接OQ、BQ,若點(diǎn)P在y軸的左側(cè),M為直線y=﹣1上一動(dòng)點(diǎn),當(dāng)△PQM與△BOQ全等時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初級(jí)中學(xué)數(shù)學(xué)興趣小組為了了解本校學(xué)生的年齡情況,隨機(jī)調(diào)查了該校部分學(xué)生的年齡,整理數(shù)據(jù)并繪制如下不完整的統(tǒng)計(jì)圖.
依據(jù)以上信息解答以下問題:
(1)求樣本容量;
(2)直接寫出樣本容量的平均數(shù),眾數(shù)和中位數(shù);
(3)若該校一共有1800名學(xué)生,估計(jì)該校年齡在15歲及以上的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜生產(chǎn)基地的氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種新品種蔬菜.如圖是試驗(yàn)階段的某天恒溫系統(tǒng)從開啟到關(guān)閉后,大棚內(nèi)的溫度y (℃)與時(shí)間x(h)之間的函數(shù)關(guān)系,其中線段AB、BC表示恒溫系統(tǒng)開啟階段,雙曲線的一部分CD表示恒溫系統(tǒng)關(guān)閉階段.
請(qǐng)根據(jù)圖中信息解答下列問題:
(1)求這天的溫度y與時(shí)間x(0≤x≤24)的函數(shù)關(guān)系式;
(2)求恒溫系統(tǒng)設(shè)定的恒定溫度;
(3)若大棚內(nèi)的溫度低于10℃時(shí),蔬菜會(huì)受到傷害.問這天內(nèi),恒溫系統(tǒng)最多可以關(guān)閉多少小時(shí),才能使蔬菜避免受到傷害?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,對(duì)于任意兩點(diǎn),,若點(diǎn)滿足,,那么稱點(diǎn)是點(diǎn),的融合點(diǎn).
例如:,,當(dāng)點(diǎn)滿是,時(shí),則點(diǎn)是點(diǎn),的融合點(diǎn),
(1)已知點(diǎn),,,請(qǐng)說明其中一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)的融合點(diǎn).
(2)如圖,點(diǎn),點(diǎn)是直線上任意一點(diǎn),點(diǎn)是點(diǎn),的融合點(diǎn).
①試確定與的關(guān)系式.
②若直線交軸于點(diǎn),當(dāng)為直角三角形時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長(zhǎng)為的正方形放在平面直角坐標(biāo)系第二象限,使邊落在軸負(fù)半軸上,且點(diǎn)的坐標(biāo)是.
(1)直線經(jīng)過點(diǎn),且與軸交于點(diǎn),求四邊形的面積;
(2)若直線經(jīng)過點(diǎn),且將正方形分成面積相等的兩部分,求直線的解析式;
(3)若直線經(jīng)過點(diǎn)且與直線平行.將(2)中直線沿著軸向上平移個(gè)單位,交軸于點(diǎn),交直線于點(diǎn),求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com