某公司在固定線路上運(yùn)輸,擬用運(yùn)營指數(shù)Q量化考核司機(jī)的工作業(yè)績.Q =" W" + 100,而W的大小與運(yùn)輸次數(shù)n及平均速度x(km/h)有關(guān)(不考慮其他因素),W由兩部分的和組成:一部分與x的平方成正比,另一部分與x的n倍成正比.試行中得到了表中的數(shù)據(jù).

次數(shù)n
2
1
速度x
40
60
指數(shù)Q
420
100
(1)用含x和n的式子表示Q;
(2)當(dāng)x = 70,Q = 450時(shí),求n的值;
(3)若n = 3,要使Q最大,確定x的值;
(4)設(shè)n = 2,x = 40,能否在n增加m%(m>0)同時(shí)x減少m%的情況下,而Q的值仍為420,若能,求出m的值;若不能,請說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是 

(1)。
(2)n=2。
(3)x=90。
(4)能,m=50

解析分析:(1)根據(jù)題目所給的信息,設(shè),然后根據(jù)Q=W+100,列出用Q的解析式。
(2)將x=70,Q=450,代入求n的值即可。
(3)把n=3代入,確定函數(shù)關(guān)系式,然后求Q最大值時(shí)x的值即可。
(4)根據(jù)題意列出關(guān)系式,求出當(dāng)Q=420時(shí)m的值即可。
解:(1)設(shè),則,
由表中數(shù)據(jù),得,解得:
。
(2)將x=70,Q=450代入得,
,解得:n=2。
(3)當(dāng)n=3時(shí),,
<0,∴函數(shù)圖象開口向下,有最大值。
∴當(dāng)x=90時(shí),Q有最大值,即要使Q最大,x=90。
(4)由題意得,
,解得:m%=或m%=0(舍去)。
∴m=50

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河北)某公司在固定線路上運(yùn)輸,擬用運(yùn)營指數(shù)Q量化考核司機(jī)的工作業(yè)績.Q=W+100,而W的大小與運(yùn)輸次數(shù)n及平均速度x(km/h)有關(guān)(不考慮其他因素),W由兩部分的和組成:一部分與x的平方成正比,另一部分與x的n倍成正比.試行中得到了表中的數(shù)據(jù).
次數(shù)n 2 1
速度x 40 60
指數(shù)Q 420 100
(1)用含x和n的式子表示Q;
(2)當(dāng)x=70,Q=450時(shí),求n的值;
(3)若n=3,要使Q最大,確定x的值;
(4)設(shè)n=2,x=40,能否在n增加m%(m>0)同時(shí)x減少m%的情況下,而Q的值仍為420?若能,求出m的值;若不能,請說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-
b
2a
,
4ac-b2
4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某公司在固定線路上運(yùn)輸,擬用運(yùn)營指數(shù)Q量化考核司機(jī)的工作業(yè)績.Q=W+100,而W的大小與運(yùn)輸次數(shù)n及平均速度x(km/h)有關(guān)(不考慮其他因素),W由兩部分的和組成:一部分與x的平方成正比,另一部分與x的n倍成正比.試行中得到了表中的數(shù)據(jù).
次數(shù)n21
速度x4060
指數(shù)Q420100
(1)用含x和n的式子表示Q;
(2)當(dāng)x=70,Q=450時(shí),求n的值;
(3)若n=3,要使Q最大,確定x的值;
(4)設(shè)n=2,x=40,能否在n增加m%(m>0)同時(shí)x減少m%的情況下,而Q的值仍為420?若能,求出m的值;若不能,請說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-數(shù)學(xué)公式數(shù)學(xué)公式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年河北省中考數(shù)學(xué)試卷(解析版) 題型:解答題

某公司在固定線路上運(yùn)輸,擬用運(yùn)營指數(shù)Q量化考核司機(jī)的工作業(yè)績.Q=W+100,而W的大小與運(yùn)輸次數(shù)n及平均速度x(km/h)有關(guān)(不考慮其他因素),W由兩部分的和組成:一部分與x的平方成正比,另一部分與x的n倍成正比.試行中得到了表中的數(shù)據(jù).
次數(shù)n21
速度x4060
指數(shù)Q420100
(1)用含x和n的式子表示Q;
(2)當(dāng)x=70,Q=450時(shí),求n的值;
(3)若n=3,要使Q最大,確定x的值;
(4)設(shè)n=2,x=40,能否在n增加m%(m>0)同時(shí)x減少m%的情況下,而Q的值仍為420?若能,求出m的值;若不能,請說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(河北卷)數(shù)學(xué)(解析版) 題型:解答題

某公司在固定線路上運(yùn)輸,擬用運(yùn)營指數(shù)Q量化考核司機(jī)的工作業(yè)績.Q =" W" + 100,而W的大小與運(yùn)輸次數(shù)n及平均速度x(km/h)有關(guān)(不考慮其他因素),W由兩部分的和組成:一部分與x的平方成正比,另一部分與x的n倍成正比.試行中得到了表中的數(shù)據(jù).

次數(shù)n

2

1

速度x

40

60

指數(shù)Q

420

100

(1)用含x和n的式子表示Q;

(2)當(dāng)x = 70,Q = 450時(shí),求n的值;

(3)若n = 3,要使Q最大,確定x的值;

(4)設(shè)n = 2,x = 40,能否在n增加m%(m>0)同時(shí)x減少m%的情況下,而Q的值仍為420,若能,求出m的值;若不能,請說明理由.

參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是 

 

查看答案和解析>>

同步練習(xí)冊答案