【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的頂點(diǎn)C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線與y軸相交于點(diǎn)A,拋物線的對(duì)稱軸與x軸相交于點(diǎn)B,與CD交于點(diǎn)K.

(1)將矩形OCDE沿AB折疊,點(diǎn)O恰好落在邊CD上的點(diǎn)F處.

①點(diǎn)B的坐標(biāo)為( 、 ),BK的長(zhǎng)是 ,CK的長(zhǎng)是 ;

②求點(diǎn)F的坐標(biāo);

③請(qǐng)直接寫出拋物線的函數(shù)表達(dá)式;

(2)將矩形OCDE沿著經(jīng)過點(diǎn)E的直線折疊,點(diǎn)O恰好落在邊CD上的點(diǎn)G處,連接OG,折痕與OG相交于點(diǎn)H,點(diǎn)M是線段EH上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)H重合),連接MG,MO,過點(diǎn)G作GP⊥OM于點(diǎn)P,交EH于點(diǎn)N,連接ON,點(diǎn)M從點(diǎn)E開始沿線段EH向點(diǎn)H運(yùn)動(dòng),至與點(diǎn)N重合時(shí)停止,△MOG和△NOG的面積分別表示為S1和S2,在點(diǎn)M的運(yùn)動(dòng)過程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請(qǐng)直接寫出變化范圍;若不變,請(qǐng)直接寫出這個(gè)值.

溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便作答.

【答案】(1)10,0,8,10;F(4,8);;(2)不變.S1S2=189.

【解析】(1)如圖1中,①∵拋物線的對(duì)稱軸x==10,∴點(diǎn)B坐標(biāo)(10,0),∵四邊形OBKC是矩形,∴CK=OB=10,KB=OC=8,故答案分別為10,0,8,10.

②在RT△FBK中,∵∠FKB=90°,BF=OB=10,BK=OC=8,∴FK==6,∴CF=CK﹣FK=4,∴點(diǎn)F坐標(biāo)(4,8).

③設(shè)OA=AF=x,在RT△ACF中,∵,∴,∴x=5,∴點(diǎn)A坐標(biāo)(0,5),代入拋物線得m=5,∴拋物線為

(2)不變.S1S2=189.

理由:如圖2中,在RT△EDG中,∵GE=EO=17,ED=8,∴DG===15,∴CG=CD﹣DG=2,∴OG===,∵CP⊥OM,MH⊥OG,∴∠NPN=∠NHG=90°,∵∠HNG+∠HGN=90°,∠PNM+∠PMN=90°,∠HNG=∠PNM,∴∠HGN=∠NMP,∵∠NMP=∠HMG,∠GHN=∠GHM,∴△GHN∽△MHG,∴,∴=HNHM,∵GH=OH=,∴HNHM=17,∵S1S2=OGHNOGHM==289.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a 和5a大小比較是(
A. a 小于5a
B. a 等于5a
C. a 大于5a
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過點(diǎn)A(﹣1,0),B(0,),C(2,0),其對(duì)稱軸與x軸交于點(diǎn)D

(1)求二次函數(shù)的表達(dá)式及其頂點(diǎn)坐標(biāo);

(2)若P為y軸上的一個(gè)動(dòng)點(diǎn),連接PD,則PB+PD的最小值為 ;

(3)M(x,t)為拋物線對(duì)稱軸上一動(dòng)點(diǎn)

①若平面內(nèi)存在點(diǎn)N,使得以A,B,M,N為頂點(diǎn)的四邊形為菱形,則這樣的點(diǎn)N共有 個(gè);

②連接MA,MB,若AMB不小于60°,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四種說法:

①過一點(diǎn)有且只有一條直線與已知直線平行;

②在同一平面內(nèi),兩條不相交的線段是平行線段;

③相等的角是對(duì)頂角;

④在同一平面內(nèi),若直線ABCD,直線ABEF相交,則CDEF相交.

其中,錯(cuò)誤的是__________________________(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列結(jié)論:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④DA平分∠CDE;⑤SABD:SACD=AB:AC.其中,正確的有個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知AB=BC,∠B=120°,AB的垂直平分線交AC于點(diǎn)D,若AC=6,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,BAC=120°,AB=AC=6.P是底邊BC上的一個(gè)動(dòng)點(diǎn)(P與B、C不重合),以P為圓心,PB為半徑的P與射線BA交于點(diǎn)D,射線PD交射線CA于點(diǎn)E.

(1)若點(diǎn)E在線段CA的延長(zhǎng)線上,設(shè)BP=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

(2)當(dāng)BP=時(shí),試說明射線CA與P是否相切.

(3)連接PA,若S△APE=S△ABC,求BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線(a≠0)的對(duì)稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.

(1)若直線y=mx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式;

(2)在拋物線的對(duì)稱軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);

(3)設(shè)點(diǎn)P為拋物線的對(duì)稱軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解七年級(jí)同學(xué)每天的睡眠時(shí)間,在七年級(jí)的10個(gè)班中,每班抽5名學(xué)生做調(diào)查,這一調(diào)查中,總體是指_____,樣本是指_____

查看答案和解析>>

同步練習(xí)冊(cè)答案