如果拋物線的圖象與x軸的交點(diǎn)至少有一個(gè)在原點(diǎn)的右側(cè),則m的取值范圍為

[  ]

A.
B.
C.
D.
答案:C
解析:

由于兩根之積為1大于0,所以兩交點(diǎn)必在原點(diǎn)的同側(cè),由已知兩交點(diǎn)應(yīng)在原點(diǎn)的有右側(cè),所以有兩交點(diǎn)的橫坐標(biāo)之和大于0,于是得m<0且2m-3>0 或m>0且2m-3<0,所以 0<m<1.5

又由根的判別式得m≤0.75,所以0<m≤0.75.

選C.

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1,x2和系數(shù)a,b,c有如下關(guān)系:x1+x2=-
b
a
x1x2=
c
a
.我們把它們稱為根與系數(shù)關(guān)系定理.
如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個(gè)交點(diǎn)間的距離為:
AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

請你參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0),拋物線的頂點(diǎn)為C,顯然△ABC為等腰三角形.
(1)當(dāng)△ABC為等腰直角三角形時(shí),求b2-4ac的值;
(2)當(dāng)△ABC為等邊三角形時(shí),b2-4ac=
 
;
(3)設(shè)拋物線y=x2+kx+1與x軸的兩個(gè)交點(diǎn)為A、B,頂點(diǎn)為C,且∠ACB=90°,試問如何平移此拋物線,才能使∠ACB=60°?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•蘭州)若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2=-
b
a
,x1•x2=
c
a
.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B兩個(gè)交點(diǎn)間的距離為:AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|
;
參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個(gè)交點(diǎn)A(x1,0),B(x2,0),拋物線的頂點(diǎn)為C,顯然△ABC為等腰三角形.
(1)當(dāng)△ABC為直角三角形時(shí),求b2-4ac的值;
(2)當(dāng)△ABC為等邊三角形時(shí),求b2-4ac的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:013

如果拋物線的圖象與x軸的交點(diǎn)至少有一個(gè)在原點(diǎn)的右側(cè),則m的取值范圍為

[  ]

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線數(shù)學(xué)公式的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn)我,已知B點(diǎn)坐標(biāo)(4,0).

(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心P位置,并求圓心P坐標(biāo);
(3)若D是拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)D,使以P、B、C、D為頂點(diǎn)的四邊形是梯形?如果存在,請直接寫出滿足條件的點(diǎn)D的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案