【題目】如圖,⊙O的半徑為1A,P,B,C是⊙O上的四個點.∠APC=CPB=60°

1)判斷ABC的形狀: ;

2)試探究線段PA,PB,PC之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)當點P位于的什么位置時,四邊形APBC的面積最大?求出最大面積.

【答案】1)等邊三角形;(2PA+PB=PC;證明見解析(3)當點P的中點時,四邊形APBC面積最大值為

【解析】

1)根據(jù)圓周角的定義可得圓周角相等,他們所對的弦也相等得出AC=BC,同弧所對的圓周角相等可得∠BAC=BPC=60°,有一個角是60°的等腰三角形是等邊三角形,可得三角形ABC為等邊三角形.(2)在PC上截取PD=PA,連接AD,得出PAD為等邊三角形,再根據(jù)已知條件得出PAB≌△DAC,得出PC=DC,PD+DC=PC,等量代換得出結(jié)論.(3)當點P的中點時,四邊形APBC的面積最大.理由,如圖過點PPEAB,CFAB垂足分別為點E,點F,四邊形APBC的面積為APBACB的和,底相同,當PE+CF最大時,四邊形的面積最大,因為直徑是圓中最大的弦,即PE+CP=直徑,即P的中點時,面積最大.

1)等邊三角形;

由圓周角定理得,∠ABC=APC=60°,∠BAC=CPB=60°,

∴△ABC是等邊三角形;
故答案為:等邊三角形;

2PA+PB=PC

證明:如圖1,在PC上截取PD=PA, 連接AD

∵∠APC=60°

∴△PAD是等邊三角形.

PA=AD PAD=60°,

又∵∠BAC=60°

∴∠PAB=DAC

AB=AC

∴△PAB≌△DAC

PB=DC

PD+DC=PC,

PA+PB=PC

3)當點P的中點時,四邊形APBC面積最大.

理由如下:如圖2,過點PPEAB,垂足為E,

過點CCFAB,垂足為F

SPAB=AB·PESABC=AB·CF

S四邊形APBC=ABPE+CF).

當點P的中點時,PE+CF=PCPC為⊙O的直徑.

∴此時四邊形∠PAD=60°PAD=60°面積最大.

又∵⊙O的半徑為1,

∴其內(nèi)接正三角形的邊長AB=

S四邊形APBC=×2×=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】有座拋物線形拱橋(如圖),正常水位時橋下河面寬,河面距拱頂,為了保證過往船只順利航行,橋下水面的寬度不得小于.

1)求出如圖所示坐標系中的拋物線的解析式;

2)求水面在正常水位基礎(chǔ)上上漲多少米時,就會影響過往船只航行?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示ABC中,∠C90°,∠A,∠B的平分線交于D點,DEBC于點EDFAC于點F

1)求證:四邊形CEDF為正方形;

2)若AC6BC8,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線過點

1)若點也在該拋物線上,請用含的關(guān)系式表示;

2)若該拋物線上任意不同兩點、都滿足:當時,;當時,;若以原點為圓心,為半徑的圓與拋物線的另兩個交點為(點在點左側(cè)),且有一個內(nèi)角為,求拋物線的解析式;

3)在(2)的條件下,若點與點關(guān)于點對稱,且、、三點共線,求證:平分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCO是平行四邊形,OA1AB3,點Cx軸的負半軸上,將平行四邊形ABCO繞點A逆時針旋轉(zhuǎn)得到平行四邊形ADEF,AD經(jīng)過點O,點F恰好落在x軸的正半軸上,則D點的坐標為(  )

A.1,B.(﹣1,﹣C.,1D.(﹣,﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工程隊在我市實施棚戶區(qū)改造過程中承包了一項拆遷工程.原計劃每天拆遷,因為準備工作不足,第一天少拆遷了.從第二天開始,該工程隊加快了拆遷速度,第三天拆遷了.求:

該工程隊第一天拆遷的面積;

若該工程隊第二天、第三天每天的拆遷面積比前一天增加的百分數(shù)相同,求這個百分數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的半徑為13,連接,交于點,,若將繞點按順時針方向旋轉(zhuǎn),則共相切_______次.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(1,0)B(3,0)兩點,y軸交于點C(0,3).

(1)該拋物線的對稱軸是直線___________,

(2)求拋物線的解析式;

(3)設(shè)拋物線的頂點為D,在其對稱軸的右側(cè)的拋物線上是否存在點P,使得PDC是等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線與坐標軸交于A,B,C三點,其中C(0,3),BAC的平分線AE交y軸于點D,交BC于點E,過點D的直線l與射線AC,AB分別交于點M,N.

(1)直接寫出a的值、點A的坐標及拋物線的對稱軸;

(2)點P為拋物線的對稱軸上一動點,若PAD為等腰三角形,求出點P的坐標;

(3)證明:當直線l繞點D旋轉(zhuǎn)時,均為定值,并求出該定值.

查看答案和解析>>

同步練習冊答案