【題目】如圖,正方形 ABCD 中,點 G 是邊 CD 上一點(不與端點 C,D 重合),以 CG為邊在正方形 ABCD 外作正方形 CEFG,且 B、C、E 三點在同一直線上,設(shè)正方形 ABCD 和正方形 CEFG 的邊長分別為 a 和 b.
(1)分別用含 a,b 的代數(shù)式表示圖 1 和圖 2 中陰影部分的面積 S1、S2;
(2)如果 a+b=5,ab=3,求 S1 的值;
(3)當(dāng) S1<S2 時,求的取值范圍.
【答案】(1)S1= a2+ b2﹣ab, S2=ab﹣ b2;(2)8;(3)1<<2.
【解析】(1)利用兩個正方形的面積減去空白部分的面積列式即可;
(2)把a+b=5,ab=3,整體代入S1的代數(shù)式求得數(shù)值即可;
(3)聯(lián)立不等式,進(jìn)一步求得答案即可.
(1)S1=a2+b2-a2-b(a+b)
=a2+b2-ab,
S2=a(a+b)-b2-a2-(a-b)(a+b)
=ab-b2.
(2)∵a+b=5,ab=3,
∴S1=a2+b2-ab
=(a+b)2-ab=.
(3)∵a2+b2-ab<ab-b2.
∴a2+b2-ab<0,
∴a2+2b2-3ab<0,
∴(a-2b)(a-b)<0,
∵a>b,
∴a-2b<0,
∴a<2b,
∴1<<2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點B,與y軸交于點A,與反比例函數(shù)y= 的圖象在第二象限交于點C,CE⊥x軸,垂足為點E,tan∠ABO= ,OB=4,OE=2.
(1)求反比例函數(shù)的解析式;
(2)若點D是反比例函數(shù)圖象在第四象限上的點,過點D作DF⊥y軸,垂足為點F,連接OD、BF.如果S△BAF=4S△DFO , 求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)今社會手機越來越普及,有很多人開始過份依賴手機,一天中使用手機時間過長而形成了“手機癮”.為了解我校初三年級學(xué)生的手機使用情況,學(xué)生會隨機調(diào)查了部分學(xué)生的手機使用時間,將調(diào)查結(jié)果分成五類:A、基本不用;B、平均一天使用1~2小時;C、平均一天使用2~4小時;D、平均一天使用4~6小時;E、平均一天使用超過6小時.并用得到的數(shù)據(jù)繪制成了如下兩幅不完整的統(tǒng)計圖(圖1、2),請根據(jù)相關(guān)信息,解答下列問題:
(1)將上面的條形統(tǒng)計圖補充完整;
(2)若一天中手機使用時間超過6小時,則患有嚴(yán)重的“手機癮”.我校初三年級共有1490人,試估計我校初三年級中約有多少人患有嚴(yán)重的“手機癮”;
(3)在被調(diào)查的基本不用手機的4位同學(xué)中有2男2女,現(xiàn)要從中隨機再抽兩名同學(xué)去參加座談,請你用列表法或樹狀圖方法求出所選兩位同學(xué)恰好是一名男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,關(guān)于 x,y 的方程組的解滿足 x<0,y>0.
(1)x= ,y= (用含 a 的代數(shù)式表示);
(2)求 a 的取值范圍;
(3)若 2x8y=2m,用含有 a 的代數(shù)式表示 m,并求 m 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績x分 | 頻數(shù)(人數(shù)) |
第1組 | 50≤x<60 | 6 |
第2組 | 60≤x<70 | 8 |
第3組 | 70≤x<80 | 14 |
第4組 | 80≤x<90 | a |
第5組 | 90≤x<100 | 10 |
請結(jié)合圖表完成下列各題:
(1)①表中a的值為; ②頻數(shù)分布直方圖補充完整;
(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是 .
(3)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對抗練習(xí),且4名男同學(xué)每組分兩人,求小明與小強兩名男同學(xué)能分在同一組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE與AC交于點M,EF與AC交于點N,動點P從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動,伴隨點P的運動,矩形PEFG在射線AB上滑動;動點K從點P出發(fā)沿折線PE﹣﹣EF以每秒1個單位長的速度勻速運動.點P、K同時開始運動,當(dāng)點K到達(dá)點F時停止運動,點P也隨之停止.設(shè)點P、K運動的時間是t秒(t>0).
(1)當(dāng)t=1時,KE= , EN=;
(2)當(dāng)t為何值時,△APM的面積與△MNE的面積相等?
(3)當(dāng)點K到達(dá)點N時,求出t的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班師生組織植樹活動,上午8時從學(xué)校出發(fā),到植樹地點后原路返校,如圖為師生離校路程s與時間t之間的圖象,請回答下列問題:
試寫出師生返校時的s與t的函數(shù)關(guān)系式,并求出師生何時回到學(xué)校;
如果師生騎自行車上午8時出發(fā),到植樹地點后,植樹需2小時,要求14時前返回到學(xué)校,往返平均速度分別為每時10km、8km,現(xiàn)有A、B、C、D四個植樹點與學(xué)校的路程分別是13km、15km、17km、19km,試通過計算說明哪幾個植樹點符合要求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司試銷一種成本為30元/件的新產(chǎn)品,按規(guī)定試銷時的銷售單價不低于成本單價,又不高于80元/件,試銷中每天的銷售量y(件)與銷售單價x(元/件)滿足下表中的函數(shù)關(guān)系.
(1)試求y與x之間的函數(shù)表達(dá)式;(2)設(shè)公司試銷該產(chǎn)品每天獲得的毛利潤為S(元),求S與x之間的函數(shù)表達(dá)式(毛利潤=銷售總價-成本總價);
(2)當(dāng)銷售單價定為多少時,該公司試銷這種產(chǎn)品每天獲得的毛利潤最大?
(3)最大毛利潤是多少?此時每天的銷售量是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com