【題目】在綜合與實踐課上,老師組織同學(xué)們以三角形紙片的旋轉(zhuǎn)為主題開展數(shù)學(xué)活動.如圖1,現(xiàn)有矩形紙片ABCD,AB8cm,AD6cm.連接BD,將矩形ABCD沿BD剪開,得到△ABD和△BCE.保持△ABD位置不變,將△BCE從圖1的位置開始,繞點B按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為α0°≤α360°).在△BCE旋轉(zhuǎn)過程中,邊CE與邊AB交于點F

1)如圖2,將圖1中的△BCE旋轉(zhuǎn)到點C落在邊BD上時,CF= ;

2)繼續(xù)旋轉(zhuǎn)△BCE,當(dāng)點E落在DA延長線上時,求出CF的長;

3)在△BCE旋轉(zhuǎn)過程中,連接AE,AC,當(dāng)ACAE時,直接寫出此時α的度數(shù)及△AEC的面積.

【答案】1;(2CF=;(360° 300°,

【解析】

1)利用即可得,代入計算即可;

2)易證EF=FB,再在RtBCF中利用勾股定理計算即可求出CF;

(3)分E在C的左右兩邊兩種情況討論。E在C的左邊時,設(shè)EC的中點為G,連接AG,過點AAHBC于點H.解直角三角形求出AG即可解決問題;E在C的右邊時,取CE的中點G,連接AG,作BHAGH.求出AG即可解決問題.

1)∵∠CBF =CEB

AB=EC=8,AD=BC=6

2)∵BE=BD BADE

∴∠DBA=EBA

DBA =CEB

EBA=CEB

EF=FB

設(shè)CF=x,則在RtBCF中,

8x2=62+ x2,

解得x=

CF=

3E在C左邊時,如圖3中,設(shè)EC的中點為G,連接AG,過點AAHBC于點H

ACAE,EGGC,

AGEC,

∵∠GCH180°﹣∠ECB180°﹣90°=90°,

∴∠AGC=∠GCH=∠AHC90°,∴四邊形AGCH是矩形,

GCAHEC84

RtABH中,BH4

此時

=30°

α=90-=60°

AGCHBHBC46,

SAECECAG×8×(46)=(1624cm2

E在C右邊時,如圖4所示,取CE的中點G,連接AG,作BHAGH

同法可得:GHBC6,AH4,

AGAH+GH4+6,

SAECECAG×8×(4+6)=(16+24cm2

此時

=60°

α=360-=30°

綜上所述α=60° 時,SAEC α=300° 時,SAEC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸的負半軸交于點,與軸交于點,連結(jié),點C(6)在拋物線上,直線軸交于點

(1)的值及直線的函數(shù)表達式;

(2)軸正半軸上,點軸正半軸上,連結(jié)與直線交于點,連結(jié)并延長交于點,若的中點.

①求證:;

②設(shè)點的橫坐標(biāo)為,求的長(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器商場銷售每臺進價分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是該型號電風(fēng)扇近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

1800

第二周

4

10

3100

A、B兩種型號的電風(fēng)扇的銷售單價;

若該商場準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,假設(shè)售價不變,那么商場應(yīng)采用哪種采購方案,才能使得當(dāng)銷售完這些風(fēng)扇后,商場獲利最多?最多可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,小明用一張邊長為的正三角形硬紙板設(shè)計一個無蓋的正三棱柱糖果盒,從三個角處分別剪去一個形狀大小相同的四邊形,其一邊長記為,再折成如圖2所示的無蓋糖果盒,它的容積記為

1關(guān)于的函數(shù)關(guān)系式是__________,自變量的取值范圍是__________

2)為探究的變化規(guī)律,小明類比二次函數(shù)進行了如下探究:

①列表:請你補充表格中的數(shù)據(jù):

0

05

1

15

2

25

3

0

3125

________

3375

________

0625

0

②描點:請你把上表中各組對應(yīng)值作為點的坐標(biāo),在平面直角坐標(biāo)系中描出相應(yīng)的點;

③連線:請你用光滑的曲線順次連接各點.

3)利用函數(shù)圖象解決:

①該糖果盒的最大容積是__________

②若該糖果盒的容積超過,請估計糖果盒的底邊長的取值范圍.(保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解本校九年級學(xué)生期末數(shù)學(xué)考試情況,小亮在九年級隨機抽取了一部分學(xué)生的期末數(shù)學(xué)成績?yōu)闃颖,分?/span>))、))四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖表,請你根據(jù)統(tǒng)計圖解答以下問題:

其中組的期末數(shù)學(xué)成績?nèi)缦?/span>

1)請補全條形統(tǒng)計圖;

2)這部分學(xué)生的期末數(shù)學(xué)成績的中位數(shù)是 組的期末數(shù)學(xué)成績的眾數(shù)是 ;

3)這個學(xué)校九年級共有學(xué)生人,若分?jǐn)?shù)為()以上為優(yōu)秀,請估計這次九年級學(xué)生期末數(shù)學(xué)考試成績?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,點上,連接,上一點,

(1)求證:;

(2),,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為5的菱形ABCD中,對角線AC長為6,點E在對角線BD上且tanEAC=,則BE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀理解)

借助圖形的直觀性,我們可以直接得到一些有規(guī)律的算式的結(jié)果,比如:由圖①,通過對小黑點的計數(shù),我們可以得到1+2+3+…+nnn+1);由圖②,通過對小圓圈的計數(shù),我們可以得到1+3+5+…+2n1)=n2

那么13+23+33+…+n3結(jié)果等于多少呢?

如圖③,AB是正方形ABCD的一邊,BB′n,B′B″n1B″B′′′n2,……,顯然AB1+2+3+…+n nn+1),分別以AB′、AB″、AB′′′為邊作正方形,將正方形ABCD分割成塊,面積分別記為Sn、Sn1、Sn2、、S1

(規(guī)律探究)

結(jié)合圖形,可以得到Sn2BB′×BCBB′2   ,

同理有Sn1   ,Sn2   ,,S113

所以13+23+33+…+n3S四邊形ABCD   

(解決問題)

根據(jù)以上發(fā)現(xiàn),計算的結(jié)果為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在新冠狀病毒的影響下,某學(xué)校積極響應(yīng)政府號召,開展了“停課不停學(xué)”網(wǎng)上授課工作,為了網(wǎng)上授課工作順利開展和取得良好成效,該校在授課第一周和授課第二周分別隨機抽取部分學(xué)生進行“網(wǎng)上授課教學(xué)效果反饋網(wǎng)上調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,調(diào)查顯示:兩次調(diào)查反饋教學(xué)效果為“較差”人數(shù)相等,第二周反饋教學(xué)效果為“很好”人數(shù)比例比第一周多,請根據(jù)調(diào)查顯示和統(tǒng)計圖中的信息解決下列問題:

在圖1中,表示“較好”的扇形圓心角的度數(shù)為_ 度,并把圖2條形統(tǒng)計圖補充完整;

若把調(diào)查反饋教學(xué)效果“很好”和“較好”作為網(wǎng)上授課成效良好的標(biāo)準(zhǔn),該校大約有名學(xué)生,請估計授課第二周學(xué)校網(wǎng)上授課成效良好的學(xué)生人數(shù);

有一位家長認為,兩次調(diào)查反饋授課效果為較差人數(shù)相等,因此學(xué)校在一周后調(diào)整的措施并沒有提高網(wǎng)上授課效果,這位家長分析數(shù)據(jù)的方法合理嗎?請結(jié)合統(tǒng)計圖,對這位家長分析數(shù)據(jù)的方法及學(xué)校在一周后調(diào)整措施對網(wǎng)上授課效果的影響談?wù)勀愕目捶ǎ?/span>

查看答案和解析>>

同步練習(xí)冊答案