已知y+b與x+1成正比例,且比例系數(shù)是k(其中b為常數(shù),k≠0).
(1)證明y是x的一次函數(shù);
(2)若這個一次函數(shù)的y隨x的增大而增大,且點P(b,k)與點Q(1,-)關于原點對稱,求這個一次函數(shù)的解析式.
【答案】分析:(1)根據(jù)y+b與x+1成正比例,設出解析式,整理得到y(tǒng)為x的一次函數(shù);
(2)由P與Q關于原點對稱求出b與k的值,代入(1)求出的一次函數(shù)解析式中,根據(jù)一次函數(shù)隨x的增大而增大,得到k大于0,確定出k與b的值,即可確定出一次函數(shù)解析式.
解答:證明:(1)由題意,得y+b=k(x+1),
整理,得y=kx+(k-b),
∵k≠0,k-b與k均為常數(shù),
∴y是x的一次函數(shù);
(2)由(1)知y=kx+(k-b),
∵點P(b,k)與點Q(1,-)關于原點對稱,
,
解之,得b=-1,k=±1,
∵一次函數(shù)隨x的增大而增大,
∴k>0,k=-1舍去,
從而知b=-1,k=1,
則一次函數(shù)的解析式為y=x+2.
點評:此題考查了待定系數(shù)法求一次函數(shù)解析式,一次函數(shù)的定義,以及關于原點對稱點的特點,熟練掌握待定系數(shù)法是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

18、已知y+2與x-1成正比例,且x=3時y=4.
(1)求y與x之間的函數(shù)關系式;
(2)當y=1時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知函數(shù)y與x+1成反比例,且當x=-2時,y=-3.
(1)求y與x的函數(shù)關系式;
(2)當x=
12
時,求y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、已知y-3與x+2成正比例,且x=1時,y=9,則y與x的函數(shù)關系式
y=2x+7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知y+5與3x+4成正比例,且當x=1時,y=2.
(1)求出y與x的函數(shù)關系式;
(2)設點P(a,-2)在這條直線上,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知y-1與x-3成反比例,且x=4時,y=2,求x=5時,y的值.

查看答案和解析>>

同步練習冊答案